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In America's visually-oriented, quantitatively illiterate culture , images have a great 
deal of power, so if a picture is today worth a thousand words , it must be worth at 
least a billion numbers . This power of the image is a hallmark of the postmodem era, 
in which the critical role of the observer has come to be recognized, and an 
understanding of the viewpoint has become inseparable from that of the object. 

In some ways , the blossoming of chaos theory marked the arrival of mathematical 
postmodernism. Not so long ago, mathematical ideas were virtually unseen in Ameri
can popular culture , and it took the enthralling fractal images of chaos theory to 
change that : the studies of chaos and fractals became some of the most widely 
discussed mathematical topics ever, and pictures of fractal images such as the 
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Mandelbrot set began cropping up on T-shirts and posters selling in American malls . 
The power of an image is difficult to underestimate , particularly when it comes to 
creating interest in a topic widely regarded as bland. Perhaps we could fuel a greater 
excitement in traditionally underappreciated areas of mathematics if only we could 
present them in a flashier graphical fashion.  Tal<e fractions, for instance, which to 
many people appear to be merely seas of numbers ; after all ,  infinitely many fractions 
have infinitely long strings of digits as their decimal expansions . Wouldn't it be nice if 
we could see complicated fractions, like :J.r base 35, as simple images? Wouldn't it be 
even nicer if, as for the Mandelbrot set, those graphical images exposed something 
about the inherent mathematical structure that the concise algebraic expression only 
implied? 

In this paper, we apply to the study of certain fractions the same graphical 
techniques used to transform the Mandelbrot set from algebra to image . This will 
enable us to turn arcane algebraic objects into eye-catching designs , such as the one 
pictured in FrcuRE 1 .  What's more , the mathematics behind this metamorphosis is not 
very hard to describe .  We begin by describing a somewhat unusual method of 
representing a fraction, which will be useful for our purposes. Fractions can be viewed 
in a number of ways , many of which are base-dependent: reduced or unreduced, as 
pieces of a pie, expanded into decimal, binary, octal, etc . The method we adopt is 
quite base-dependent, and relies upon the remainders generated at each stage of the 
long-division process in base b. Consider t, which has a base 10 (decimal) expansion 
of 0 . 142857. We can calculate this using the usual long division process in base 10 as 
follows: 

0. 142857 
7)1 .  000000 

7 
30 
28 

20 
14 
60 
56 
40 
35 
50 
49 

We can equivalently represent t base 10 by writing the sequence of remainders 
produced in the above long division: 1 � 3 � 2 � 6 � 4 � .5 � 1, a cycle that 
repeats infinitely. Note that what makes this a base ten long division is that we 
multiply the dividend by ten at every step; we could easily make it into a base b long 
division by multiplying by b at each step. This new long division would yield the 
sequence of remainders for t base b ; in fact, one can find the sequence of remainders 
for any fraction in any base simply by performing the appropriate long division . 
However, the laboriousness and iterative nature of long division make it desirable to 
have a simpler, more concise method of finding sequences of remainders . Happily, 
such a method exists , and it is simply the evaluation of the following function: 

DEFINITION. Let a, b ,  and n be positive integers with (n ,  a) = 1 and b > 1. If r; is 
the remainder produced at step i of the base b long division of *, the remainder 
produced at the (i + 1)st step is given by r;+r = Fb,./r) = b X r; (mod n). We call 
Fb '" the remainder function , since if we begin with r 0 = a, iteration of Fb, " yields the 
sequence of remainders of * long divided in base b. 
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Note that a and n are relatively prime,  so * i s  a reduced fraction; we will assume 
throughout that all fractions are reduced. We can see the remainder function in action 
with the fraction used above , t base 10. We begin with r0 = 1 .  Next we have 
r1 = F10,7 ( r0 )  = 10 X 1 (mod 7) = 3, followed by r2 = F10,irr ) = 10 X 3 (mod 7) = 2, 
r3 = F10,7 ( r2 ) = 10 X 2 (mod 7) = 6, r 4  = F10, 7 (r3 )  = 10 X 6 (mod 7) = 4, r5 = 
Fro, 7 ( r4 )  = 10 X 4 (mod 7) = 5, and r6 = Fro, 7 (r5 )  = 10 X 5 (mod 7) = 1 .  

Since r6 = r0  = 1 ,  the sequence repeats . Note that each iteration of the remainder 
function simply multiplies by b and mods by n. Then, since r0 is a, we can calculate 
the ith remainder directly using the formula ri = ab i (mod n) . This compact formula 
simplifies many arguments involving sequences of remainders , and you will see it 
often in the pages to come . 

In the analysis above, our friend t base 10 displays some surprising qualities. For 
example , r1 + ri +3 = 7 for all i. Moreover, if we let di represent the digit of the 
decimal expansion that is i places to the right of the decimal point, then in this 
example di + di +3 = 9 for all i. These symmetries, as we shall see, have more than a 
numerical significance . 

Before moving on to graphical topics , it will serve us well to discuss the three kinds 
of behavior a sequence of remainders (as well as the corresponding expansion) can 
exhibit. Each of these behaviors corresponds to a particular kind of graphical analysis 
graph, a concept we introduce in detail below. First, the sequence of remainders of !!.-n 
in base b (as well as the corresponding base b expansion) may terminate ; this happens 
if each remainder (and digit) is zero after some point, and such a fraction will have a 
graphical analysis graph that begins at some point and ends at some different point . 
This is the case if and only if every prime factor of n is also a prime factor of b .  
Second, the sequence may have a repeating cycle , but one that begins only after some 
initial string of remainders that never reappears . In this case, the graphical analysis 
graph will be an infinitely repeated figure , but with a tail created by the initial 
unrepeated string of remainders . This happens if and only if n has some factors that 
divide b and some that do not. Thirdly, the sequence may have only repeated cycles 
with no initial unrepeated shing of remainders ; this occurs if and only if n and b are 
relatively prime. This sort of fraction produces the neatest graphical analysis graph: a 
figure that retraces itself infinitely, with no unrepeated points . 

The remainder function described above will allow us to work more easily with 
sequences of remainders . That it is a function also makes it a nice candidate for a 
graphical technique we will now introduce . 

Graphica l a n a l ysis 

Graphical analysis or graphical iteration [2] gives us a visual way to explore function 
iteration . To graphically analyze a function F(r) ,  one does the following: Let r0 be 
some number. Then, beginning with i = 0, draw a vertical line from ( ri , r) to the 
point ( ri , F(r) )  = (ri , ri + 1 ) .  (See FrcuRE 2) From there, draw a horizontal line to 
( F(r) ,  F(r) )  = ( ri + l ' t· i + l ) .  Then increase i by one iteratively and repeat the preced
ing steps . Here ,  we will apply graphical analysis to our function Fb, 11(d . In order to 
avoid minor difficulties, we will say that if the remainder becomes zero at r11, we stop 
the process at r11 _ 1 . Although graphical analysis works only on functions, the remain
der function associated with a given fraction is so closely tied to the fraction that we 
will refer to the graphical analysis of Fb, 17(r) = b X ri (mod n) , with r0 = a , as the 
graphical analysis of * in base b .  
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F I G U R E 2 
Graphical analysis of t in base 2 .  

Note that the remainder function F2,5( x )  = 2x (mod 5) plays a crucial role in 
FIGURE 2.  However, you may have noticed that F35,37 ( x ) does not appear in the 
graphical analysis graph of :f7 in base 35 (see FIGURE 1). The reason is that for so 
complex a picture , the slanted parallel lines of the remainder function become so 
dense as to obscure the image. Thus, despite their importance ,  for the sake of clarity 
we will omit them in the images to come. 

Also, although the remainder function is theoretically important, one may graphi
cally analyze a fraction without drawing the graph of the remainder function itself. In 
effect, the graphical analysis begins at the point ( r0 ,  r0 ) , proceeds first vertically then 
horizontally to ( r1 , r1 ), then moves vertically then horizontally again to ( r2 , r2 ) , and 
continues in this fashion. Hence in practice one can graphically analyze a fraction in a 
given base as follows : Compute the sequence of remainders ; for each remainder, draw 
the appropriate dot on the line y = x; then connect the dots (following the order of 
the sequence of remainders), moving vertically then horizontally. Thus the sequence of 
remainders entirely detennines the graphical  analysis graph of the fract ion. So when 
proving certain properties of graphical analysis graphs, such as various symmetries, we 
need not consider the entire image , but only the distribution of remainders . 

Since the graphical analysis of a fraction varies from base to base , one might wonder 
how many distinct graphical pictures exist for a given fraction %. Bases zero and one 
are exempt from consideration. If h 1 and h 2 are bases such that h1 = h 2 (mod n), 
then ab/' = ab2"

' (mod n), so % will generate identical sequences of remainders in 
both bases. Thus , we only have to consider for our bases a single representative from 
each congruence class modulo n .  This means , of course ,  that at most n bases may 
produce distinct graphs . Further narrowing the field is the fact that if b is a base such 
that b = 0 (mod n) or b = 1 (mod n),  the pictures are not very interesting: in the 
former case, all remainders save the first are zero, so the graphical analysis graph is 
merely a single point, since the analysis ends with the last nonzero remainder. In the 
latter case , if m is a positive integer, then * written in base mn + 1 is 0.1, and the 
sequence of remainders is an infinite string of ones ; again, the graphical analysis graph 
is a single point . We will exclude bases in the 0 congmence class in many later 
considerations. However, we will often be interested in all bases in which a fraction 
has a repeating expansion, and thus we will include bases in the 1 congruence class in 
spite of their graphical shortcomings . 
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The various graphs of a fraction in  different bases often bear some relation to  one 
another. The following definition will help us relate some of them to others . 

Rotation a l  graph pairs 

DEFINITION 1. !!.!. and "2 are rotational graph pairs if the graphical analysis graph 
nl n2 

of!!.!., when rotated 180° about the point (-2n, %), produces the graphical analysis graph 111 .... 

These pictures exemplify rotational graph pairs: 

1.5 1.5 

10 10 

5 .5 

0 0 
0 5 10 1.5 0 5 10 1.5 

(a) (b) 

F I G U RE 3 

Graphical analysis of 17/19 base 5 vs . 2/ 19 base 5. 

Since the graph of a fraction in base b depends entirely on its sequence of 
remainders, we can show that two fractions are rotational graph pairs simply by 
showing that "rotating" the sequence of remainders of one fraction about the point ( i, i) produces precisely the other sequence . In other words, the sequences must be 
zero in exactly the same places ,  and whenever the ith remainders of both sequences 
are nonzero, they must be equidistant from the point (%, %) . This is true if and only if 
the remainders in question sum to n. Thus we need only show that adding corre
sponding nonzero terms in the two sequences of remainders invariably yields n .  

THEOREM 1 .  In each base b ,  * and n �a are rotational graph pairs .  

Proof First note that the only possible remainders at any stage of the long divi
sion of * in base b belong to the set {0, 1, 2, . . . , n - 1} .  Now, for any i, 
ab ; (mod n) + (n - a)bi (mod n) = (ab ; + (n - a)b i ) (mod n) = nb ; (mod n). Since 
nbi = 0 (mod n) we have that the sum of the ith remainders of each sequence must 
be either 0 or n. Note that it is impossible for the ith remainder of one sequence to 
be zero and the ith remainder of the other nonzero: the nonzero remainder would 
make the sum necessarily greater than zero, and the zero remainder would make the 
sum necessarily less than n. Hence the sequences are zero in precisely the same 
places . Finally, if corresponding terms in the two sequences are nonzero, they cannot 
sum to zero, and so must sum to n .  • 
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Part of the appeal of Theorem 1 lies in its breadth: it applies to any fraction in any 
base, regardless of the behavior of the fraction's sequence of remainders . However, in 
order to have breadth, one often must sacrifice depth. If we consider more restricted 
classes of fractions ,  we will be able to prove several stronger, more penetrating results . 

We can extend Theorem 1 significantly if we restrict ourselves to fractions and 
bases that produce purely repeating sequences of remainders-that is, those satisfying 
(b ,  n) = 1. Since the graphs of these fractions consist of a single repeated figure , 
beginning with any point in the cycle will yield the same image . Thus if c1 is a term in 
the sequence of remainders for !!_ base b ,  then the sequence of remainders of � base n n 
b will go through exactly the same cycle , beginning at c1 instead of a. Hence the two 
fractions !!_ and � will produce identical graphs . Similarly, if Co is a term in the n n .... 

sequence of remainders of " -a , then � and " -a will produce identical graphs . This n n n 
corolla1y then follows immediately from Theorem 1 :  

COROLLARY 2. Suppose b and n are relat ively prime . If ab ; 
= c1 (mod n) for some i 

and (n - a)bi = c2 (mod n) for some j, then � and � are rotational graph pairs in 
base b .  

For example, 2 X 100 = 10 (mod 19)  and 17  X 10 = 18 (mod 19), so �� base 10 and �� base 10 are rotational graph pairs . 
Although we will return to this limited class of fractions later, in tl1e next section we 

enlarge our consideration to include all sequences of remainders that do not termi
nate . The discussion hinges on a different sort of symmehy in the graphical analysis 
graph of a fraction: a rotational symmetry of a single graph, ratl1er tl1an of one graph 
to another. 

Rotation a l  symmetry 

Consider the following two very different images in FIGURE 4: 
The lovely rotational symmetly present in the graphical analysis graph of t base 10 

is strikingly absent in the graph of $. One might wonder why: after all , both 7 and 37 

0 2 3 4 5 6 7 
(a) 

F I G U R E 4 
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Graphical analysis of 1/7 base 10 vs . 1/37 base 10. 
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are not only relatively prime to 10, but also prime numbers . The following theorem 
will help to explain this difference. 

THEOREM 3. If (n ,  a) = 1 and n contains at least one prime factor that does not 
divide b then the following are equivalent: 

A. n - a appears in the sequence of remainders produced by the long division in 
base b of� (i.e . ,  r m = n - a  for some m). 

B.  There exists an m, 0 < m < n, such that for each natural number i, we have 
r; + ri +m = n. 

C. The graphical analysis graph of the function Fb, " beginning with r0 = a  has 180° 
rotational symmetry about the point (% , %) . 

Proof We will show A= B by induction on i. By hypothesis , r0 + rm = a +  (n - a) 
= n ,  so induction begins. Assuming that r; + ri +m = n ,  we must show that r; + 1 + 
ri +m + 1 = n. Using the remainder function, we have 

r; + 1 + ri +m + 1 = Fb, 11 ( r; )  + Fb,,( ri +m ) = b  X r; (mod n )  + b X ri +m (mod n )  

= b X ( r; + r; +"' ) (mod n ) = b X n (mod n) = 0 .  

Thus r; + 1  + ri +m + 1 = 0 (mod n ) .  Since n contains at least one prime factor that does 
not divide b ,  the sequence of remainders of !!... base b does not terminate, so no n 
remainder can be zero. Therefore 0 < r; + 1  + ri +m + 1  < 2n ,  implying that r; + 1  + 
ri +m + 1  = n .  

We now tum to B =C. Condition B guarantees the existence o f  some positive 
integer m such that r; + rm + i = n for each i .  Let s be the smallest such integer. Since 
r, + r2., = n = r., + r0 , it follows that r0 = r28 , and thus the length of the repeating 
cycle of the sequence of remainders is 2s .  Furthermore, the cycle is composed of the 
two halves r0 , r1 , . . .  , r, _ 1  and r8 , rs + 1 , • . •  , r28 _ 1 . Since r; + rs + i = n  for each i ,  
these halves are essentially rotational graph pairs , and thus the whole graph is 
rotationally symmetric by itself. 

Finally we address C = A. Condition C means that our graph is rotationally 
symmetlic about ( i, i ) , and since r0 = a, (a ,  a) must be a point on the graph. 
Because of the graph's symmetry, (n - a, n - a) must also be a point on the graph, 
implying that n - a is a term in the sequence of remainders . Thus r, = n - a for 
some m. • 

Remarks and observation s  

In  the example given above , 36  i s  indeed nowhere to be  found i n  the sequence of 
remainders for -d7 base 10, which is 1 � 10 � 26, whereas 6 is the fourth number in 
the sequence for � base 10. The equivalence of parts A and B thus predicts the visual 
discrepancy. In general , one need not go to the trouble of graphically analyzing a 
fraction to see if its graph is symmetric : it's enough to compute the sequence of 
remainders and examine it for a single number, n - a . 

Interestingly, the symmetry among the remainders mentioned in part B of Theorem 
3 is related to a similar symmetry among the digits. Suppose that the condition 
described in part B holds for a fraction � in base b. The long division algorithm tells 
us that for each i ,  b X r;_ 1 = nd; + r; where d; is the i th digit in the decimal 
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expansion of * in base b .  Thus ndi + ndi +m = b(ri - l + ri +m- l ) - (ri + ri +m) = 
bn - n .  This implies that di + di +m = b - 1 for each i , a symmetry that we noted 
regarding t base 10. A similar argument shows that the symmetry of remainders 
follows from the symmetry of digits, implying that the two are inseparable . 

Symmetries in fraction s  with ( b, n) = 1 

Already the subject of Corollary 2, this class of fractions and its subclass of fractions 
with prime denominators will prove worthy of close scrutiny. Members of the larger 
class share one outstanding quality: in a given base b ,  rotational symmetry depends 
only on the denominator of the fraction in question (provided, of course, that the 
fraction is reduced). We make this precise in the next theorem. 

THEOREM 4. Let !!.. be a reduced .r:raction in base b, where (b ,  n) = l. Then the ll J' 
graphical analysis graph of * is rotationally symmetric in base b if and only if the 
graphical analysis graph of � is rotationally symmetric in base b .  

Proof Suppose that the graphical analysis graph o f  � i s  rotationally symmetric in 
base b. The formula hi (mod n) gives us the i th remainder of the long division of � 
and ab i (mod n) gives us the i th remainder of the long division of !!... Since .!. is n n 
rotationally symmetric , by Theorem 3 we have hi (mod n) + b"'+ i (mod n) = n for 
each i and for some m satisfying 0 < m < n .  Thus h i + b"'+ i = 0 (mod n). Multi
plying through by a yields ab i + ab"'+ i = an= 0 (mod n), implying that ab i 
(mod n) + ab"'+i (mod n) = 0 or n .  Since (b , n) = 1 ,  the sequence of remainders of!!.. 11 
base b does not terminate , and thus no remainders can be zero. We therefore 
conclude that ab; (mod n) + abm+i (mod n) = n ,  proving the rotational symmetry of * 
in base b .  

The converse argument i s  quite similar. Supposing ab i (mod n )  + ab "' + i 
(mod n) = n for all i and for some m, we clearly have ab i + abm+i = 0 (mod n) . We 
need only find a positive integer c such that ca = 1 (mod n), and we will be able to 
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0 2 4 6 8 10 12 0 2 4 6 8 10 12 
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F I G U RE 5 
Graphical analysis of 1/13 base 10 vs . 5/13 base 10. 
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multiply through by c and complete the approach used above . Since our fraction i s  
reduced, (a ,  n) = 1 ,  so there exist positive integers c and d such that ca + dn = l. 
This implies that ca = 1 - dn = 1 (mod n), so the desired positive integer does indeed 
exist. • 

This theorem guarantees that, for our limited class of fractions, if � is rotationally 
symmetric in base b ,  then * will be as well, provided (a ,  n) = l. It often happens that � 
and * in fact produce identical graphs in base b ; this is the case for � and * in base 
10, where (a ,  7) = l. However, this need not happen, as FIGURE 5 shows . 

Theorem 4 allows us to say that every reduced fraction with denominator n is either 
symmetric or not symmetric in any base b satisfying (b ,  n) = 1, since the value of the 
numerator plays no role . Thus for short, we will occasionally say simply that n is 
symmetric or not symmetric in base b .  

The Euler totient  function 

We will be better able to understand symmetries in fractions with prime denominators 
with the aid of the Euler totient Junction . Denoted cp(n), this function takes as input a 
positive integer n and produces as output the number of positive integers m that are 
less than or equal to n and satisfy (m,  n) = l. Some examples are cp(4) = 2, cp(6) = 2 ,  
cp(12) = 4, and, for any prime p ,  cp( p )  = p - l .  The Euler totient function boasts two 
convenient properties which allow us to evaluate it easily for any small positive 
integer: First, if m and n are relatively prime positive integers , then cp(mn) = 
cp(m)cp(n); and second, if p is prime and j is a positive integer, then cp( pl) = 
pJ- l ( p - 1) [3] . Thus, cp(12) = cp(22 3) = cp(2 2 )cp(3) = 2(2 - 1)2 = 4. One of the bet
ter known theorems involving the Euler totient function is as follows : 

LEMMA 5. (EULER's FORMULA). If b and m are positive integers and (b ,  m) = 1 ,  
then bcp(m ) = 1 (mod m). 

In particular, if p is prime and a not a multiple of p, we have ap-I = 1 (mod p) .  
Given a fraction with a purely repeating sequence of remainders , it's natural to be 
curious about the length of the repeating cycle (also known as the sequence's period). 
Euler's formula gives us some information about this period. Suppose a <  m and ;, 
base b has a purely repeating sequence of remainders; we noted earlier that this is the 
case if and only if (b ,  m) = l. The first remainder r0 in the sequence is ab0 = a, so 
the period of the sequence is the smallest nonzero k such that rk = a. In other words , 
the period is the smallest nonzero k such that ab k = a  (mod m). Since (b ,  m,) = 1 ,  
Euler's formula tells u s  that bcp(m ) = 1 (mod m), and thus abcp(m ) = a  (mod m). 
Because the period is the smallest nonzero k with ab k = a  (mod m), and cp(m) 
satisfies this congruence, it follows that the period must divide cp(m). In the special 
case where p is prime and b is not a multiple of p ,  we have the useful fact that the 
period of the sequence of remainders of f, in base b divides p - l. 

Fraction s  with prime denominators 

Consider for a moment a reduced fraction with a prime denominator p in a base b 
that is not a multiple of p .  Clearly (b ,  p)  = 1 ,  so Theorem 4 applies ,  showing that the 
value of the numerator does not affect the symmetry of the fraction's graph. Thus to 
detennine if p is symmetric in base b ,  it is enough to examine the behavior of � in 
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base b .  Although this is nice , we can use our restriction to fractions with prime 
denominators to get something even nicer: a convenient characterization of rotational 
symmetry. 

Any reduced fraction with prime denominator p in a base b satisfying (b ,  p) = 1 
must have a purely repeating sequence of remainders . The period of this sequence has 
everything to do with the rotational symmetry of the fraction: an even peliod means 
symmetry, an odd peliod no symmetry. We enshrine this convenient characterization 
in the following theorem: 

THEOREM 6. Let m be the smallest positive integer such that bm = 1 (mod p), 

where p is an odd prime and (b, p )  = l. Then i is rotationally symmetric in base b if 

and only if m is even. 

Proof First note that because (b ,  p) = 1 and p is prime, it follows from Euler's 
formula that b I' -l = 1 (mod p ), so there exists some positive integer satisfying 
b"' = 1 (mod p). Hence it makes sense to discuss the smallest such integer. Now 
suppose i is rotationally symmetric in base b, and let c1 be a term in the sequence of 
remainders of i base b. Then for some i, h i = c1 (mod p). Since 0 < c1 < p, we have 
(c1 , p )  = 1 ,  so, by Theorem 6, % must be rotationally symmetric in base b .  Thus , by 
Theorem 3, p - c1 must appear in the sequence of remainders of % base b .  Hence 
for some j, c1 bJ = p - c1 (mod p). Since lJ i = c 1 (mod p), we have b i +J = c1 bJ = 

p - c1 (mod p), implying that p - c1 is in the sequence of remainders of i base b .  

Thus each remainder r in  the repeating cycle of  i base b occurs together with p - r .  

Since p i s  odd, we cannot have r = p - r, so  the elements of  the cycle occur in 
distinct pairs . Hence the cycle length must be even. Given that the first remainder is 
b

0 (mod p) = 1, this means that the smallest positive integer satisfying b"' = 1 
(mod p)  is even. 
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To show the converse ,  let m be the smallest positive integer satisfying b il l = 1 
(mod p ), and suppose m is even. Then m = 2 d  for some positive integer d. Hence 
b"' = b2d = (bd)2 = 1 (mod p) .  Thus (bd + 1)(bd - 1) = 0 (mod p) and since p is 
prime either bd = 1 (mod p) or bd = - 1  (mod p). The first case is clearly impossible 
since d � !{J- < m, and m was assumed to be the smallest positive integer such that 
b il l = 1 (m�d p) .  Thus we conclude that bd = - 1  = p - 1 (mod p) .  Therefore p - 1 

is the dth remainder of .!.. base b ,  so by Theorem 3 .!.. is rotationally symmetric in p p 
base b .  • 

Note that p must be prime for the above theorem to hold. Consider FrcuRE 6, 

which shows that 1� base 2 is not symmehic, though 2m = 1 (mod 15) gives us a 
smallest m of 4. 

Counting bases that produce symmetry 

One might be tempted to guess that a prime number is symmetric in some randomly 
distributed number of bases; delightfully, this is not so. As we noted earlier, to find 
the ratio of bases in which a prime p is symmetric, we need only consider a single 
base b from each congruence class mod p .  We will be interested here only in the 
bases in which .!.. has a repeating sequence of remainders . Therefore our considered p 
bases will be all bases except those in the 0 congruence class .  

For example , the reciprocal of 19 is  symmetric in 9 of the 18 bases between 2 and 
20, excluding 19; thus it is symmetric in half of the considered bases. The reciprocals 
of many other prime numbers are also symmetric in � of the considered bases; some 
examples are 3, 7, 1 1 ,  23, 31, and .59. Other primes have reciprocals that are 
symmetric in % of the considered bases; the first few are 5, 13, 29 , 37, and_ 61. Still 
other primes, including 41 ,  73, and 89, have reciprocals symmetric in "fi of the 
considered bases . In fact, one can find prime numbers that are symmetric in (2"2-:; 1) 
of the considered bases for many positive integers n. We can explain this separation of 
the prime numbers into families, but to do so we will need a couple of number-theo
retic results . [For details , see for example [3] . ]  

LEMMA 7. For any n � 1 ,  we have n = Ldln qJ(d) where the sum is taken over all 
divisors of n .  

LEMMA 8. Let p be  a prime number and d a positive divisor of p - 1 .  Then there 
are exactly qJ(d) numbers b that are incongruent (mod p)  and have the property that 
d is the snw.llest positive integer satisfying bd = 1 (mod p) .  

To illustrate Lemma 8, let p = 7 and choose d = 3. Lemma 8 tells us  that there are 
qJ(3) = 2 possible bases b which are not congruent (mod 7) and have the property that 
while b

1 and b 2 are not congruent to 1 (mod 7), b 3 is congruent to 1 (mod 7). In 
other words , were we to compute the sequence of remainders for 1 in one base from 
each of the seven congruence classes mod 7, we would find that exactly two of them 
produce a sequence of period 3 .  If we want to know how many will yield a sequence 
with period 6, we simply have to calculate qJ(6), which is 2.  The same holds for any 
other divisor of 6. To find the number of these bases in which the graph of 1 is 
rotationally symmehic, Theorem 6 tells us we need only determine in how many of 
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them t has a sequence of remainders of even period. Since we ignore bases in the 
zero congruence class , all the bases we consider satisfy (b ,  7) = l. Since the period of t 
in any of these bases must divide qJ(7) = 6, the only possible even periods are 6 and 2. 
Thus our answer is qJ(6) + qJ(2) = 3, and we see that t is symmetric in one half of the 
considered bases .  This sort of analysis underlies the following proof. 

THEOREM 9. Suppose p is an odd prime number and n is the largest integer 

satisfying 2"1 p - 1 .  Then , excluding bases b = 0 (mod p) ,  {;- is symmetric in 2'�-:; 1 of 

the remaining bases . 

Proof We need only consider a single representative base from each nonzero 
congruence class mod p .  By Theorem 6, it suffices to find the number of bases in 
which {;- produces a sequence of remainders of even period. The period of {;- in any 
representative base must divide qJ( p )  = p - 1-, so we want to find for each even 
divisor m of p - 1 the number of bases in which _!_ has a sequence of period m. p 
Lemma 8 tells us that for a divisor q of p - 1 ,  _!_ will produce a sequence of period q p 
in exactly qJ(q ) of the representative bases .  Hence we need only compute I:({J(m), 
where m varies over the even divisors of p - l. We will call the value of this sum k .  

Suppose 2 divides p - 1 exactly n times . Then the prime factorization o f  p - 1 is 
2"pf1p:2 · · ·  p/?, where each p1 is an odd prime. The largest odd divisor of p - 1 is 
thus D = pf1p;2 • • •  pf? . Now every even divisor m of p - 1 has the form 2;t , where 
1 ::s; i ::s; n and t divides D. So we have 

11 
k = I: I: 'P(2it). 

i�l t iD 

Now since tiD and D is odd, t must be odd. So (2;, t )  = 1 for any i ,  and by the first 
convenient property of the Euler function, we have qJ(2it) = qJ(2i)qJ(t) ,  so 

1 1  1l 
k= I: L'P(2i)'P(t)= L'P(2i)L'P(t). 

By Lemma 7 '""' m(t)  = D = pa1pa2 · · · paN so  ' L... tiD..- 1 2 N ' 

ll 

t iD 

k = pflp;2 . . .  p�N L 'P(2i). 
i�l 

Now I:;'�1 qJ(2i) = qJ(2) + qJ(22 ) + · · ·  + qJ(2 " ) . By the second convenient prope1ty of 
the Euler function, the right side is 2°(1) + 21 (1) + 22 (1) + · · ·  + 2"- 1 (1) = 2" - 1 , so 
we have I:;'�1 qJ(2i) = 2"- l. Finally we arrive at our value for k :  

Since we are considering only a single base from each of the p - 1 nonzero 
congruencf classes mod p ,  we have that {;- is symmetric in 

k 
p - 1  

of the considered bases . 

(2"- 1 ) pf1p;2 • • •  p�N 211- 1 
2"pflp;2 • • •  p�N 211 

• 



MAT H E M AT I C S M A G A Z I N E  VO L .  73, N O. 2 ,  A P R I L  2 0 0 0  95  

CoROLLARY 10. Suppose p i s  an odd p·rime and D is the largest odd divisor of 
p - 1. Then , excluding bases b = 0 (mod p) ,  i" fails to be symmetric in P � 1 of the 

remaining bases. 

Proof Suppose 2 divides p - 1 exactly n times . Applying Theorem 9 we get that .!. 
fails to be symmetric in 1- 2 '�� 1 = ;.. of all the considered bases. The prird� 
factorization of p - 1 is 2" D. Th;s i" fails to be symmetric in 2�, = 2 ?,D = P � 1 of the 
possible bases . • 

We noted earlier that in a base of the form ap + 1, where a is a positive integer, .!. p 
will have a sequence of remainders that is simply an infinite string of ones . This leads 
to a graph consisting only of the fixed point (1, 1). If p = 2, this graph is in fact 
symmetric about ( �, � ), but for any odd prime it fails to be symmetric. Thus an odd 
prime must fail to be symmetlic in all bases belonging to the 1 congruence class mod 
p. However, there exist odd primes that are symmetric in all of the other considered 
bases, and thus are as symmetric as it is possible for an odd prime to be . 

Perfectly symmetric numbers and Fermat primes 

DEFINITION. A positive integer n > 1 is perfectly symmetric if its reciprocal is 
symmetric in any base b provided b =/= 0 (mod n) and b =/= 1 (mod n). 

Clearly, 2 is trivially perfectly symmetric . This membership in the set of perfectly 
symmetric numbers makes 2 a spectacularly rare positive integer, joined only by 
widely-spaced comrades :  

THEOREM 11. The only pe·rfectly symmetric numbers are 2 and the Fe·rmat primes . 

Proof Recall that a Fermat prime. is a prime of the form 22"' + 1, where m is a 
natural number. Suppose n is a perfectly symmetric number, and suppose also that n 
is composite . Then there is some base b that divides n and satisfies 1 < b < n .  Clearly 
b and n are not relatively prime. So the sequence of remainders of * in base b cannot 
be purely repeating: either it terminates or has an initial string of unrepeated 
remainders . In the latter case, the string of unrepeated digits creates a tail in the 
graphical analysis graph of * base b ,  and the tail ruins any symmetry. In the former 
case, n - 1 cannot appear in the sequence of remainders , for if it did, we would have 
rk = n - 1 for some nonzero k , implying that r2 k = 1. But the sequence of remainders 
terminates, so this is not possible . In either case n is not symmetric in base b ,  
contradicting our assumption. 

Therefore n must be prime. We have already seen that 2 is perfectly symmetric. If 
n is an odd prime, then, by Corollary 10, * will fail to be symmetric in bases 
belonging to D of the n - 1 nonzero congruence classes mod n, where D is the 
largest odd divisor of n - 1. Any odd prime must fail to be symmetric in at least one 
of these base congruence classes, but since n is perfectly symmetric, it cannot fail in 
any of the others ; therefore D = 1. Thus no odd number greater than one can divide 
n - 1, implying that n - 1 is of the form 2; for some i .  Therefore n = 2; + 1 and n is 
prime. If i = uv, where u is odd and u > 1, then 2v + 112; + 1, so 2; + 1 fails to be 
prime. Thus in this case our i must be of the form 2k , where k E N. Therefore our 
prime n is of the form 22k + 1, and is thus a Fermat prime . 
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Conversely, if n is either 2 or a Fermat prime, then clearly either n = 2, and is thus 
perfectly symmetric, or n is odd. In the latter case, by Corollary 10 we have that � 
fails to be symmetric in bases belonging to D of the n - 1 nonzero congruence classes 
mod n, and must be symmetric in all the rest. Here n - 1 = 2i, so D = 1. But the 
reciprocal of any number m must fail to be symmetric in bases belonging to the 
1 congruence class mod m. Hence if x > 1 and b = x (mod n), � is symmetric in 
base b. Therefore n is perfectly symmetric. • 

Currently there are only five known Fermat primes: 3, 5, 17, 257, and 65537. Thus , 
only six known perfectly symmetlic numbers lurk among all the positive integers 
greater than one, suggesting that perfect symmetly is among the more unusual 
properties a number can have . However, precisely how many perfectly symmetric 
numbers exist remains an open question. 

Question s  and con c l usions  

Our discussion of  the number of  symmetly-producing bases for various fractions raises 
two questions about cettain kinds of prime numbers : 
Question 1 .  Does there exist , for each positive integer n ,  a natural number k such 
that 2 " (2k + 1) + 1 is prime? 

If so, then for any positive integer n one can find a prime p such that 2 divides 
p - 1 exactly n times. This would mean that for any positive integer n, primes exist 
th . . 2"- 1 f h 'd d b at are symmetnc m -2-,- o t e cons1 ere ases . 
Question 2. How many Fermat primRs are there? 

No one has any idea; we know only that there are at least five . Pierre de Fermat 
thought that all numbers of the form 22k + 1 were prime, but histmy has proven 
otherwise: All the numbers generated using k = 5, . . .  , 1 1  have turned out to be 
composite , as well as selected others , including the monstrous 2221471 + 1. There 
remain, however, infinitely many more as-yet-undetermined possibilities .  An answer 
to this question would also tell how many perfectly symmetric numbers exist. 

Thus ends our exploration of fractions and symmetry. Postmodernism has taught us 
that all ways of looking at a problem are not equivalent: different perspectives 
highlight different properties .  Adopting our society's penchant for images led us to 
examine more closely the symmetries of certain fractions, and opened our eyes to 
unexpected visions . 
Note on the computer program During the course of this project, we wrote a 
simple computer program that graphically analyzes any fraction in any base. We 
found many of the images quite striking and beautiful, and were sony not to be able 
to include all of them in this article .  For those of you who would like to generate 
some of these images yourselves ,  our program is in an electronic supplement at 
http:�www.maa.org/pubs/mm_supplements/index.html. 
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Introduction 

You might be surprised to learn that the finite continued fraction 
1 

3 + ------:;1---
7+-----::1--

and its reversal 1 292 + 1 
1+ 1 

15 + 1 
1 + 292 

15+ --1-
7+3 

h h t Th f . . hf 103993 d 103993 . l ave t e same numera or. ese ractlons s1mp y to 33102 an ""355 respective y. 
In this paper, we provide a combinatorial interpretation for the numerators and 
denominators of continued fractions which makes this reversal phenomenon easy to 
see. Through the use of counting arguments , we illustrate how this and other 
important identities involving continued fractions can be easily visualized, derived, and 
remembered. 

We begin by defining some basic terminology. Given an infinite sequence of 
integers a0 � 0, a1 � 1, a2 � 1, . . .  , let [a0, a1, ... , an] denote the finite continued 
fraction 

1 ao + --------::1�-
al +---�1-

a2+--�1-
+-an 

The infinite continued fraction [a0, a1, a2, ... ] is the limit of[a0, a1, ... , an] as n � oo. 
This limit always exists and is some irrational number a [3]. The rational number 
r" := [a0, a1, ... , an] is a fraction Pnlqn in lowest terms, called the n-th convergent of 
a. It is well-known that Pn and qn satisfy the recurrences 

Pn =an P11-1 + Pn-2 
qn = anqn-1 + qn-2 

for n � 2, with initial conditions p0 = a0, p1 = a1a0 + 1, q0 = 1, q1 = a1. 
Now let's do some combinatorics . For a given continued fraction [a0, a1, a2, . • .  ], 

consider the following tiling problem. Let P11 count the number of ways to tile a 
1 X (n  + 1) board with dominoes and stackable square tiles . All cells (numbered 
0, 1, . . .  , n) must be covered by a tile . Nothing can be stacked on top of a domino, but 
cell number i may be covered by a stack of as many as a; square tiles , i = 0, . . .  , n .  
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FIGURE 1 shows an empty board with the height conditions a0 , a1 , . . .  , a ll indicated. 
FIGURE 2 gives an example of a valid tiling for a 1 X 12 board with height conditions 
5 , 10, 3, 1 , 4 , 8 , 2, 7, 7, 4, 2 , 3 .  

heights : 

Board 
cells : 

1- - - - ... 

.. - - - ... .. - - - ... ao '" - - - ... 
.. 

- - - ... 
,.. - - - + - - - ... a4 '" - - - ... 
'" - - - + - - - ... a " ,. - - - + - - - ""  

'" - - - + - - - + - -
-

- ., '" - - - + - - - ... a6 
1- - - - + - - - + - - - -1 (1 3 .. - - - + - - - + - - - ., 

1- - - - + - - - + - - - + - - - + - - - + - - - + - - - -1  

\ S S S S S S S  
0 2 3 4 5 6 

F I G U R E 1 
An empty 1 X (n  + 1) board. 

10 

8 

a u 
a ,� - 1  .. - - - ., 

,- - - - + - - - -1  

1- - - - + - - - -1  

S S \ 
ll - 1  ll 

heights : 5 

1- - - - -1 

1- - - - -1 

1- - - - -1  

1- - - - -1  

1- - - - -1  

.. - - - -1  

7 7 

1- - - - + - - - -1  

Board 
cells : 

,. - - - + - - - -1  

1- - - - + - - - -t  

0 1 2 

1- - - - + - - - -1  4 
1- - - - + - - - + - - - .,  3 2 '" = = = : = = = : = = = : _ 2 _ 

3 4 5 6 

F I G U RE 2 
7 8 9 10 11  

A tiling satisfYing the height conditions 5,  10, 3, 1 ,  4, 8, 2, 7, 7, 4, 2, 3. 

For n � 2, we show 
Pll = all Pil - l + Pll - 2 · 

This follows from the observation that a tiling either ends with a stack of square tiles 
or a single domino. In the first case, there are a ll choices for the stack size and Pll _ 1 
ways to tile cells 0 through n - l. In the second case, there is only one choice for the 
last domino, and there are Pll _ 2 ways to tile cells 0 through n - 2. Using FIGURE 3 one 
can check that P0 = a0 and P1 = a0 a1 + l. Since Pll and Pn satisfy the same 
recurrence and initial conditions, we have P" = pll . 

1- - - - -1  

.. - - - -1  
.. - - - -1  

1- - - - -1 

Co•ntin� 
ao tilings : 

1- - - - -1 

.. - - - -1 

ao '" - - - ... 
.- - - - + - - - -1 
1- - - - + - - - -1  

� � 
F I G U R E 3 

- or -

+ 

1- - - - -1 

1- - - - -1  

ao '" - - - ... 
.- - - - + - - - -1 

1- - - - + - - - -1  

1- - - - + - - - -1  

1- - - - + - - - -1  

1- - - - + - - - -1  

1- - - - + - - - -1 

VerifYing the initial conditions for the recurrence relation P11 = a " P11 _ 1 + P11 _ 2 • 
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Removing cell 0 from the previous board, let Q" count the number of ways to tile 
the 1 X n board with dominoes and stackable square tiles, where the i th cell may be 
covered by a stack of as many as a1 square tiles, i = 1, . . . , n .  By the same reasoning as 
before, (and letting Q0 = 1 denote the "empty" tiling) we see that Q11 = q11 • 

To illustrate, consider the continued fraction representation for 7T ,  which begins 
[3, 7, 15, 1, 292, . . .  ]. See FrcuRE 4. If we count the number of ways to tile cells 0, 1 ,  
and 2, we get p2 = 333. Counting the number o f  ways to tile only cells 1 and 2 easily 
gives us q2 = 106. This produces the 7T approximation r2 = 333/ 106. The reader 
should verify that tiling cells 0 through 3 produces r3 = 355/113 .  

292 

.. - - - .. '" - - - -1 
1.5 ' - - - < 

.. - - - -1 .. - - - -1  .. - - - -1 .. - - - -1 1- - - - -1 1- - - - -1 7 1- - - - -1 .- - - - + - - - -1  1- - - - + - - - -1  

1- - - - -1 1- - - - -1 .. - - - -1 1- - - - -1 1- - - - -1 1- - - - -1 
1- - - - -1 1- - - - -1 1- - - - -1 1- - - - -1 
1- - - - -1  
1- - - - -1  

1- - - - + - - - -1  3 > - - - + - - - <  .. - - - + - - - + - - - -1  1- - - - -1  1- - - - + - - - + - - - -1  1 .. - - - -1  1- - - - + - - - + - - - + - - - + - - - -1  

\ s s s s s · · · 

0 1 2 3 

F I G U R E 4 
4 

The beginning of the 7T board. 

When a1 = 1 for all i � 0, it is well-known that the nth convergent p11 /q" is the 
ratio of two consecutive Fibonacci numbers . Specifically, if we define fo = 1, f1 = 1 ,  
and for n � 2, f, ,  = f,, _ 1 + f,, _ 2 , then p" = !,, + 1 and q" = f,, . You may recall that the 
Fibonacci number f,, counts the number of ways to tile a 1 X n board with 1 X 1 
squares and 1 X 2 dominoes .  So the continued fraction tiling problem generalizes the 
tiling interpretation of Fibonacci numbers [ 1 ,  2]. 

Identities 

Armed with our tiling interpretation, many well-known continued fraction identities 
can be explained combinatmially. We begin with the reversal identity. 

THEOREM l. If [ a 0 ,  a1 , . . .  , a 11 _ 1 , a ll ] =  pll /q11 , then [ a 11 , a 11 _ 1 , . . •  , a1 , a0 ] = 
Pn/Pn - 1 · 

Proof Although one can easily prove this by induction, the theorem is nearly 
obvious when viewed combinatorially. To understand the common numerator, we see 
that the number of ways to tile the board with height conditions a,, a 11 _ 1 , . • .  , a1 , a0 is 
the same as the number of ways to tile the board with height conditions 
a0 , a1 , . . .  , a 11 _ 1 , a ll . The denominator of [ a ,, a 11 _ 1 , . . .  , a1 , a0 ] is the number of ways 
to tile the board with height conditions [ a ll _ 1 , . . .  , a 1 , a0 ], which by reversal is p" _ 1 . 

The next few identities are useful for measuring the rate of convergence of 
convergents . 
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THEOREM 2. The difference between consecutive convergents of [ a0 ,  a1 , a2 , . • •  ] is : 
r" - r11 _ 1  = ( - l)

" - 1 
/q11 q 11 _ 1 • Equivalently, after multiplying both sides by q" q" _ 1 , 

we have 

( ) Il - l p" q" - 1 - P11 - 1 q" = - 1 . 

Proof Given height conditions a0 , a1 , . . .  , a 11 , let g;" denote the set of all tilings on 
cells 0, . . .  , n and let tff',, denote the set of all tilings on cells l , . . .  , n .  Note that these 
sets have sizes I g;" I = p" and I tff',, I = q" . 

We will construct an almost one-to-one correspondence between the sets g;" X t'ff11 _ 1 
and �, _ 1 X tff',, . Consider ( S , T)  E�, X tff,, _ 1 .  For i � l , we say ( S , T )  has a fault at 
cell i if both S and T have tiles that end at i .  We say ( S, T )  has a fault at cell 0 if S 
has a square at cell 0. For instance, in FIGURE 5 ,  there are faults at cells 0, 3, 5, and 6. 

If ( S , T) has a fault, construct ( S' ,  T') by swapping the " tails" of S and T after the 
rightmost fault . See FIGURES 5 and 6. Note that ( S' , T ' ) Eg;11 _ 1 X tff',, . Since ( S ' , T ' ) 
has the same rightmost fault as ( S , T) ,  this procedure is completely reversible . 

heights : a o a 1 a2 a ,J a4 a .� {[() {/ 7  a s a� a w a 1 1 

S E.9' 1 1  D I 0 � 
! ! ! r 7 

tail 

0 2 3 4 5 6 8 9 10 11 

T E /ff 10 § I I 
tail 

F I G U RE 5 
A pair of tilings with faults and tails indicated. 

heights : a o a 1 a 2 a ,J a4  a .-., ac,  a i a s a� a w a 1 1 

S ' E .9'10 D D 
0 2 3 4 5 6 7 8 9 10 11  

T ' E iff1 1  § FJ 
F I G U R E 6 

Result of swapping tails in FIGURE 5.  

Notice when either S or T contains a square , (S, T)  must have a fault . Thus the 
only fault-free pairs occur when S and T consist of all dominoes in staggered 
formation as illustrated in FIGURE 7. When n is odd (i . e . ,  S and T both cover an even 
number of cells), there is precisely one fault-free element of g;" X tff,, _ 1 and no 
fault-free elements of g;" _ 1 X tff',, .  Therefore when n is odd, we have I g;" X tff',, _ 1 I 
- l g<Jil _ l X fffn l = l . 
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5 6 7 

F I G U R E  7 

8 9 10 1 1  

The fault-free pair consists o f  staggered dominoes.  

Similarly when n is even, there are no fault-free elements of !Jl!, X �, _ 1 and exactly 
one fault-free element of !Jl!, _ 1 X �. . Hence when n is even, I !Jl!, X ��� _ 1 I 
- I !Jl!, _ 1 X �� I = - l .  Treating the odd and even cases together, we obtain 

The next identity shows that the even convergents are increasing, while the odd 
convergents are decreasing. 

THEOREM 3. r, - r, _ 2 = ( - l) "a ,/q, q, _ 2 . Equivalently, after multiplying both 
sides by q, q, _ 2 , we have 

ll p, q, - 2 - p, _ 2 q, = ( - 1) a, . 

Proof As in the last proof, we use tail swapping after the last fault to create a 
one-to-one correspondence between the "faulty" elements of !Jl!, X �, _ 2 and !Jl!, _2 X �  • .  The proof is essentially given in FIGURES 8, 9, and 10. 

The only unmatched elements are those that are fault-free. When n is odd, there 
are no fault-free elements of !Jl!, X �, _ 2 , but there are precisely a, fault-free 

heights : ao li t (1 2 a ,J a4 a .::, {/ 6  ai as ag a 10 a u 

S E.3"u I I 8 8 
1 tail 

0 1 2 3 4 5 6 7 8 9 10 1 1  
T E (!J9 a 

tail 

F I G U R E 8 
An element of 9'1 1 �9 with rightmost fault indicated. 

heights : ao a l (12  a, a4  a,, (1 6  ai as as a 10 a u 

S ' E .3"g I I 8 
0 2 3 4 5 6 7 8 9 10 1 1  

T ' E (!J1 1 a a 8 
F I G U R E 9 

The result of swapping tails in Figure 8.  
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0 2 3 4 .5 6 7 

F I G U R E 1 0  
Problem pairings are fault-free .  

8 9 10 1 1  
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elements of .9J, _2 X tff, ,  consisting of a stack of squares on the nth cell, and dominoes 
everywhere else (FIGURE 10). Likewise when n is even, there are no fault-free 
elements of .9J, _2 X tff, ,  but there are an fault-free elements of 9Jn X tffn _2 , consisting 
of a stack of squares on the nth cell, and dominoes everywhere else. Thus we have 
established I .9J, X tff, _ 2 I - I  .9J, _ 2 X tff, I = ( - 1)" a, , as desired. 

Using the combinatorially clear fact that q, � oo as n � oo, the last two identities 
demonstrate that (r0 , r1 ) , (r2 , r3) , (r4 , r5 ) , • . •  is a sequence of nested intervals whose 
lengths are going to zero . Hence , lim , _.  .,r, exists . 

Extensions 

Next we examine the quantity K( i , j) ,  for i 5.j, that counts the number of tilings of 
the sub-board with cells i ,  i + 1, . . .  , j  with height conditions a1 , a 1 + 1 ,  . . .  , a1 . For 
convenience we define K( i ,  i - 1) = 1. We see that K(i , j) is the numerator of the 
continued fraction [ a 1 ,  a 1 + 1 ,  • . •  , a1 ] and the denominator of the continued fraction 
[ a 1 _ 1 , a1 , • • •  , a1 ] .  Thus the K( i , j)  are identical to the classical continuants of Euler 
[4]. 

The following theorem, due to Euler, can also be proved by the same tail-swapping 
technique. 

THEOREM 4.  For i < m <j < n ,  

K ( i , j ) K ( m , n ) - K ( i , n ) K ( m , j ) = ( - 1) 1 -m K ( i ,m - 2) K (j + 2 , n ) . 

This result follows by considering tilings of sub-boards S from cells i to j and T 
from m to n .  Every faulty pair ( S, T )  corresponds to another faulty pair ( S' ,  T ' )  
obtained by swapping the tails after the last fault. The term on the right side of 
Theorems 4 counts the number of fault-free tilings that only occur when the 
overlapping regions (of S and T,  or of S '  and T ' ,  depending on the parity of j - m) 
consist entirely of dominoes in staggered formation.  See FIGURES 11 and 12. Setting 
i = 0 and m = 1, Theorem 4 generalizes Theorems 2 and 3 by allowing us to compare 
arbitrary convergents r1 and r, . 

heights : a1 .  am - l am a ,. 

· · · ==:J 
K ( i , m - 2) fault-free region K(j + 2. 11 ) 

F I G U R E 1 1  
When j - m is even, there are K( i ,  m - 2) K(j + 2,  n) fault-free tilings (S ,  T) . 
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heights : a ; .  a m - l am 

K ( i , m - 2) fjlult-free region K(j + 2 , n ) ) 
F I G U R E 1 2  

When j - m is odd, there are K( i ,  m - 2) K(j + 2, n) fault-free tilings (S ' ,  T ' ) .  

Finally, we generalize in a different direction. Suppose we allow dominoes to be 
stacked as well as  squares .  Specifically, suppose we impose height conditions b 1 , b2 , . . .  
so that we may stack as many as h; dominoes on cells i - 1 and i .  We let P,, count the 
number of ways to tile the board with cells 0, 1, . . .  , n and height conditions a0 , . • .  , a, 
and b 1 , . . .  , b, for the squares and dominoes respectively. We let Q" count the same 
problem with cell 0 removed. As before, we see that P,, and Q" satisfy 

P,, = a, P,, - 1 + b" P, , _ 2 
Q/1 = a,l<? n - 1 + bli Q il - 2 

for n � 2, with initial conditions P0 = a0 ,  P1 = a1 a0 + b 1 , Q0 = 1 ,  Q 1 = a 1 .  But these 
are precisely the conditions that define the convergents of the expansion 

b l ao + --------=--,-b-2 ___ _ al + ------=-.------b3 a2 + ___ ..::....,b...--
+ ---"-"a li + 

In other words, when the above continued fraction is truncated at the b 11ja" term, 
it simplifies to the rational number P,,/Q11 • All of the preceding theorems have 
generalizations along these lines with similar combinatorial interpretations. We invite 
the reader to continue these investigations . 

Acknowledgment. We thank Chris Hanusa for asking an inspiling question. 
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Venn Sa i d  I t  Couldn't Be Done 

Introducti on  

P E T E R  H A M B U R G E R  
R A Y M O N D  E .  P I P P E R T 

I nd i a n a  U n ivers i ty-Purdue U n ivers ity Fort Wayne 
Fort Wayne, IN 46805 

Margaret E. Baron, in her fascinating essay [1] on the historical development of logic 
diagrams , \vTites :  

The scope and content of ancient formal logic was determined by 
Aristotle's Organon and, in particular, the Doctrine of the Syllogism 
which. as it has come to us, contains no diagrams .  Nonetheless ,  so 
suggestive is the language and manner of presei1tation of the syllogistic 
schema, that many logicians have speculated as to the possibility that 
Aristotle made use of spatial concepts in his actual lectures . . . . Isolated 
diagrams using some f(mn of geometric figure to denote a proposition 
or syllogism occurred in the works of a mnnber of sixteenth-century 
logicians . . . . It was , however, Gottfried \Vilhelm Leibniz who first de
voted serious study to the analysis of logical propositions by means of 
diagrams .  

According to  Baron, Leibniz used not only diagrams with three circles or ellipses, 
wherever it appears more convenient, but three straight lines as well . She also 
attributes the popularization of circle diagrams to Euler: "Through him, knowledge of 
the diagrams became widespread and they had some considerable influence in the 
nineteenth century. ' "  For mathematicians like Gergonne and Lambert, claims Baron , 
the diagrams constituted a vital starting point for an investigation of syllogism. In 
England, diagrammatic representation was regarded to be of major importance and 
many books had a section entirely devoted to this topic. Baron writes :  " It was , 
howc\·er, John Venn who gave the most detailed consideration to the whole question 
of diagrams and it is to his credit that he took all possible steps to survey the 
contributions of his contemporaries . . . . '" 

The inclusion/ exclusion arguments of logic and the development of their diagram
matic representations have a long history. They are associated with many famous 
figures ,  such as the Greek Aristotle (B .C . . 384-322), the Germans \Vilhelm Leibniz 
(1646-1716) and Gottfi·ied Ploucquet ( 1716- 1790), the Swiss Leonhard Euler 
(1707- 178:3), the French Joseph Diaz Gergonne (1771-18.59) and Johann Heinrich 
Lambert (1728-1777), the Scottish Sir William Hamilton of Edinburgh (1788- 18.56), 
and the British George Boole (181.5- 1864) and John Venn (1834-192.3) [6, 7]. 

The spatial diagrams are named after Venn, a logiciim . Most people have heard of 
Venn diagrams,  and seen drawings with two or three circles ,  which illustrate the idea 
in simple cases . The famous three-circle diagram is widely used; its applications range 
from counting to actuarial science, and fi·om biology to English drarna. But fewer 
people may know that Venn diagrams also have applications in computerized indus
trial design and automated industrial manufacturing as well . 

\Ve will need a few definitions . Formally speaking, a Verzrz diagram consists of rz 
simple closed curves in the plane so that all possible intersections of the interiors and 
the exteriors of these curves are noncmpty and connected. More precisely, an n-Venrz 
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diagram in the plane is a collection of simple closed Jordan curves !7 = { C 1 ,  C 2 ,  . . .  , C , } 
such that each of the 2 "  sets X 1 n X2 n · · · n X, is a nonempty and connected region; 
here , X; is either the bounded interior or the unbounded exterior of Ci , i = 1, 2, . . .  , n. 
We note that each of the 2" sets can be described by an n-tuple of zeros and ones 
where the i th coordinate is 0 if X; is the unbounded exterior of C; · and 1 otherwise . A 
Venn diagram is simple if at most two curves intersect (transversally) at any point in 
the plane . Among non-simple Venn diagrams,  we shall consider only those in which 
any two curves meet (not necessarily transversally) in points and not in segments of 
curves.  Two Venn diagrams are isomorphic if, by continuous transformation of the 
plane , one of them can be changed into the other or its mirror image. An n-Venn 
diagram !7 is called irreducible if each of the n families of n - 1 curves, obtained 
from !7 by deleting in turn one of the n curves, fails to be a Venn diagram. 
Otherwise , it is called reducible . The projection of a Venn diagram from the plane to 
the sphere via stereographic projection yields a spherical Venn diagram. Two planar 
Venn diagrams that can be projected to the same spherical Venn diagram are said to 
belong to the same class . 

It is easy to see that there is only one Venn diagram with one curve and only one 
with two curves .  It is also known that there is only one simple Venn diagram on three 
curves .  (Each of these three Venn diagrams can be drawn with a circle or circles .)  
There are two different planar ones with four curves .  But it  is also known that there is  
only one spherical simple Venn diagram with four curves .  Furthermore, it  easily 
follows from Euler's theorem ( F  + V - E = 2, where F, V, and E are the numbers of 
faces, vertices ,  and edges of a planar graph) that one cannot form simple (or 
non-simple) Venn diagrams with more than three circles .  We show this only for the 
simple case. Indeed, since two circles can intersect at most twice,  we have V ::::; 12 for 
four circles .  Now each vertex in a simple Venn diagram has degree 4, so the number 
of edges E = 2V , whence F + V - 2V = 2 or F = 2 + V. Since F = 16, we find that 
16 ::::; 2 + 12, a contradiction. Similarly, the fact that two ellipses can intersect in at 
most four points can be used to show that one cannot form Venn diagrams with more 
than five ellipses . 

Previous resu l ts 

The study of the geometrical and topological properties of more complicated planar 
and spherical Venn diagrams,  and their applications in logic set theory, algebra, 
measure theory, geometry, topology, combinatorics, graph theory, and other areas of 
mathematics became important in this century, and has produced an impressive 
journal literature. This study diverged from the diagrammatic representation of 
syllogistic schema, and has developed into a study of its own. Mathematicians such as 
the Hungarians Alfred Renyi (1921-1970), Kat6 Renyi (1929-1969), and Janos 
Suranyi, the Poles E. Marczewski and P. Nowicki, and the Americans Branko 
Grunbaum and Peter Winkler have investigated properties such as convexity of Venn 
diagrams, the number of k-gons in a Venn diagram on n-curves, and the existence of 
many different types of Venn diagrams .  

One of the most frequently investigated problems of Venn diagrams is the existence 
of Venn diagrams with five (congruent) ellipses. An erroneous statement of John Venn 
[6] made the problem famous, and this is the subject of this paper. Venn wrote : 

Beyond three terms circles fail us, since we cannot draw a fourth circle 
which shall intersect three others in the way required. But tl1ere is no 
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theoretic difficulty in  carrying out the scheme indefinitely. Of course any 
closed figure will do as well as a circle , since all that we demand of it, in 
order that it shall adequately represent the contents of a class,  is that it 
shall have an inside and an outside, so as to indicate what does and what 
does not belong to the class. There is nothing to prevent us from going on 
for ever thus drawing successive figures, doubling the consequent number 
of subdivisions. The only objection is, that since diagrams are primarily 
meant to assist the eye and the mind by the intuitive nature of their 
evidence, any excessive complication entirely frustrates their main object. 

For four terms the simplest and neatest figure seems to me to be one 
composed of four equal ellipses thus arranged: 

It is obvious that we thus get the sixteen compartments that ·we want, 
counting, as usual, the outside of them all as one compartment. The eye 
can distinguish any one of them in a moment by following the outlines of 
the various component figures .  . . . The desired condition that these 
sixteen alternatives shall be mutually exclusive and collectively exhaustive, 
so as to represent all the component elements yielded by the four terms 
taken positively and negatively, is of course secured. 

With five terms ellipses fail [emphasis added], at least in the above 
simple form. It would be quite possible to sketch out figures of a 
somewhat horse-shoe shape which should answer the purpose-that is, 
five of which should fulfill the condition of yielding the desired thirty-two 
distinctive and exhaustive compartments . For all practical pmposes, how
ever, any outline which l.s not very simple and easy to follow with the eye,  
fails entirely in its main purpose of affording intuitive and sensible 
illustration. What is wanted is that we should be able to distinguish and 
identify any assigned compartment in a moment, so as to see how it lies in 
respect of being inside and outside each of tl1e principal component 
figures . . . . 

It must be admitted that such a diagram is not quite so simple to draw 
as one might wish it to be; but then we must remember what are the 

1 07 
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alternatives before any one who wishes to grapple effectively with five 
terms and all the thirty-two possibilities which they yield. He must either 
write down or in some way or other have set before him all those 
thirty-two compounds of which XY'DNV is a sample ; that is , he must 
contemplate the array produced by 160 letters . In compalison with most 
ways of doing that, the sketching out of such a figure is a pleasure , besides 
being far more expeditious ; for, with a very little practice , any of the 
diagrams here offered might be drawn in but a minute fraction of the time 
requisite to wlite down all the letter-compounds . I can only say for myself 
that, after having for valious purposes worked through hundreds of logical 
examples, I generally resort to diagrams of this descliption; it not only 
avoids a deal of unpleasant drudge1y, but is also a valuable seculity against 
error and oversight. The way in which this last advantage is secured will be 
best seen presently, when we come to inquire how these diagrams are to 
be used to represent propositions as distinguished from mere terms or 
classes .  

Beyond five terms it  hardly seems as if diagrams offered much substan
tial help; but then we do not often have occasion to meddle with problems 
of a purely logical kind which involve such intlicacies .  

A new resu l t  

Branko Grlinbaum, one of  the most influential geometers of  this century and a 1975 
recipient of the Lester R. Ford award for an article related to the present topic, wrote 
as follows [3]: 

In [6] Venn gave examples of Venn diagrams with four ellipses. How
ever, he mistakenly stated that no five ellipses can form a Venn diagram; 
indeed, it takes only a little patience to verify that the five congruent 
ellipses in each part of [FIGURE 2] form a Venn diagram. 

Venn's erroneous assertion was repeated-unchecked and unchallenged 
-by several authors1 for almost a centmy. 

The first Venn diagram of five ellipses . . .  was published only in 1975 
[2]; a non-simple example . . . was found by Schwenk [5]. [See FIGURE 3] 

Using Euler's theorem and the fact that two ellipses can intersect in no 
more than four points , it follows easily (by an argument similar to the one 
concerning circles) that there can be no Venn diagrams with six or more 
ellipses. One possible explanation for Venn's error is that he may have 
believed that all Venn diagrams can be constructed following a sort of 
"greedy algolithm" . . .  : to get a diagram with n curves first make a 
diagram with n - 1 curves and then add the last one. However, it is easy 
to verify that none of the Venn diagrams in [FIGURES 2 and 3] ( nor any 
other simple Venn diagram of five ellipses) can be obtained by adding a 
fifth ellipse to a Venn diagram of four ellipses [emphasis added]. Probably 
the same is true without the assumption of simplicity. 

1Among others , in the mticle Logic Diagrams in P. Edwards (editor), 1967, Encyclopedia of Philosophy, 
Macmillan, New York, NY, 1967, Logic Diagratn� ,  by M. Gardner, Vol 5 .  pp. 77-81 . 
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F I G U R E  2 
Grlinbaum's four 5-Venn diagrams. 

�� ---- -
( I 

� I  

F I G U R E  3 

Schwenk's non-simple 5-Venn diagram. 

1 09 



1 1 0 © M AT H E M A T I C A L  A S S O C I A T I O N  O F  A M E R I CA 

(a) (b ) 

F I G U RE 4 
Two reducible, simple 5-Venn diagrams with five congruent ellipses . (The deletion of the 
(unique) vertical ellipse yields a Venn diagram of four ellipses . )  

Using graph theory, the authors , together with Kiran B .  Chilakamarri, developed 
methods to analyze and construct new Venn diagrams.  One of the results is the 
objective of this note-the Venn diagram that, more than a century ago , Venn 
erroneously said couldn't be drawn. The Venn diagrams in FIGURE 4 are simple , 
reducible Venn diagrams with five congruent ellipses . (This is very special in one 
sense , since each ellipse has the same size . With ellipses of different sizes one can 
obtain diagrams in which no region is very small . )  The two Venn diagrams belong to 
the same class ,  and these are the only simple , reducible Venn diagrams with five 
ellipses.  The lengthy and technical proof of this statement appeared in [4] . 

An important part of the creation of mathematical research is the formulation of 
good questions which lead to large quantities of related results , which in turn fuel the 
engine of progress in mathematics .  Griinbaum's problems and conjectures (some true 
and some false) have been the inspiration for all of our work on Venn diagrams .  We 
are very grateful to Professor Giiinbaum for his encouragement and helpful com
ments . 
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1 .  Introduction 

Superexponentiation and Fixed 
Points of Exponential and 

Logarithmic Functions 

STE PHEN R .  WASSEL L 
Sweet Br ia r  Col lege 

Sweet Br ia r, VA 24595 

We shall investigate an application of "superexponentiation," an operation that we 
denote by n (following [5]) and define as follows : 

b n n == b 1\ ( b 1\ ( . . .  1\ b ) . . .  ) ( b > 0 ,  n = 1 ,  2 ,  . . .  ) , ( 1 ) 

where exponentiation occurs n times .  Superexponentiation simply continues the 
pattern of addition, multiplication, and exponentiation.  It seems to have first appeared 
in the literature in [4], for the purpose of exhibiting extremely large (albeit finite) 
numbers (its implicit use in [7], an earlier work than [4], is shown in [5]). Superexpo
nentiation is used in [5] and [6] to examine the logical foundation of mathematical 
induction.  In [2] superexponentiation and its inverse operation, iteration of logarithms , 
are used to analyze the running time of certain algorithms . A general discussion of 
superexponentiation is given in [I] . 

For our purposes, superexponentiation naturally arises from analyzing fixed points 
of exponential functions (and hence of the corresponding logarithms). We approach 
this using orbit analysis as in [3], i . e . ,  by iterating the exponential function F( x )  = b X ,  
starting with input x = b . For b > 1 the resulting orbit clearly will b e  strictly 
increasing, and for bases such as 2 or 10 (tl1ose used in the applications cited above), 
the orbit will diverge rapidly to infinity. Will this divergence occur for all b > 1?  What 
kind of behavior is observed if 0 < b < 1? Will tl1e orbit converge to a single number 
for suitable values of b?  

I n  Section 2 we discuss the context under which the author arrived at the problem. 
In Section 3 we answer the question of convergence, finding tl1e set of b for which 
the orbit does indeed converge; this result is stated as a theorem at the end of the 
section. In Section 4 we offer several suggestions for further exploration. 

2 .  Motivation 

When introducing exponential and logaritl1mic functions , 
F( x ) = b ,. and G ( x ) = log b x ( b > O , b =/= 1) , 

the instructor will inevitably display the graphical consequence of the fact that F( x )  
and G(  x )  are inverses. FIGURE 1 shows the case b = e ,  surely the most popular case to 
present, given the importance of the functions e x  and In x .  

For other bases , however, the graphical situation may not be  a s  familiar. FIGURE 2 
shows the case b = { 1/2}. For 0 < b < 1 ,  b x  exhibits exponential decay rather than 
exponential growth. While this often may be presented, tl1e corresponding logarithm 
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F I G U R E  1 

The familiar graphs of e X ,  In x ,  and x .  

F I G U R E  2 
The graphs of (lj2)" ,  log 112 x ,  and x .  

may often be  omitted (after all , the three most prevalent logarithmic bases, b = 2 ,  
b = e and b = 10 ,  all satisfY b > 1 ) .  Consider, however, that in  FIGURE 2 ,  unlike in 
FIGURE 1, the graphs of the exponential and logalithmic functions intersect (along the 
line y = x ). Thus, there is some real number x0 , clearly between 0 and 1, for which 

( 1/2) xo = x0 = log 112 x0 . 

In other words , x0 is simultaneously a fixed point of the functions j( x )  = (1/2) x and 
g ( x )  = log 112 x .  How can we find the value of x0? Trying to solve (1/2) x = x using 
the inverse function results in x = log 112 x (and vice versa, of course), and the 
equation (1/2)"" = log 112 x does not seem any more promising. 

Let us try a recursive approach. Take the given equation, x = 0.5', and substitute it 
into itself: 

X = 0.5(0 .S ' ) . 
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(Note that, as indicated by the parentheses, this cannot be simplified using the 
familiar property (b ' "  ) " = b 1 / l / l . Unlike addition and multiplication, exponentiation is 
nonassociative; cf. [I]) Repeating this process ad infinitum leads to a formal expression 
for the solution: 

. = 0 5( o . . s < . . " ) )  
X o  • . (2)  

It remains to determine whether or not (2) converges .  Numerical calculation suggests 
oscillatmy convergence, as evidenced by the orbit of 0.5 under iteration of j( x )  = 0.5 x 
(rounded to three significant figures): 

0 .500 , 0 . 707 , 0 .613 , 0 .654 , 0 . 635 , 0 . 643 , 0 .640 , 0 . 641 , . . . .  

The oscillation and convergence of this orbit can also be seen graphically in FIGURE .3 , 
which stems from FIGURE 2. At least we can thus approximate the value of the fixed 
point x0 to any desired degree of accuracy. In the next section, we shall generalize the 
above discussion to other bases and explore the behavior of the resulting family of 
functions . 
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0 .8  

The graphs of (1/2)'  and x ,  as well as the orbit of 1/2 under iteration of j( x )  = (1/2)' ,  
approaching the limit of  (2). 

3 Genera l i zation 

Given a base b > 0 ,  we wish to determine whether 
b n 00 := lim l l .... xh n 11 ( .3) 

exists as a real number, or is infinite , or does not exist. In case the limit exists as a 
number, which we denote by x ,  it follows that x is a solution to 

b x = x ,  or equivalently, x = log" x .  ( 4) 

We must first ask, for what b > 0 is it even possible to solve (4)? The case b = 1 is 
hivial: we can easily solve I-' = x (but note that log" x is not defined for b = 1). For 
b E (0, 1) the graphs of b x, x, and log" x will intersect, as in FrcuRE 2, and so it is 
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possible to solve (4) . What of the case b > 1? For sufficiently large b (e.g. , b = e) the 
graphs of b X , x ,  and logh x do not intersect, and so (4) is impossible . Since, however, 
b ""  does intersect the line y = x when 0 < b ::'0: 1, (4) should be possible when b > 1 is 
sufficiently close to 1 as well. 

We explore this by focusing on the exponential function (results for the logaritlunic 
function would follow immediately). To this end, consider the one-parameter family of 
functions 

(5) 

parameteiized by tl1e base b .  (Unlike witl1 F( x ), we now explicitly indicate that the 
base b is a parameter.) What happens to the graph of Fh( x ) as b > 0 varies? We show 
five snapshots of Fb( x )  plotted in the same coordinate plane in FIGURE 4. Note that 
the family pivots about the point (0, 1) since b 0 = 1 for all b > 0. For b sufficiently 
close to 0, Fi(O) is a negative number of large magnitude . While F£(0) stays negative 
for all 0 < b < 1, its magnitude lessens as b � 1. When b = 1 ,  F£(0) = 0 (and the 
graph is simply a horizontal line). When b is just slightly larger tl1an 1, then, F£(0) is 
just slightly positive , and we see tl1at this allows for two intersection points of Fh( x )  
with x ,  i . e . ,  two solutions of  (4). 

- 1  1 2 3 4 

F I G U R E  4 
The graphs of Fb( x )  = b X , for b =  1 /40, 1/2,  1, /2, and 2, along with the line y = x .  

As b > 1 becomes larger, tl1e value of F£(0) becomes larger in magnitude , and 
eventually tl1e graphs of Fb( x )  and x no longer intersect, so that (4) is no longer 
possible to solve . We can determine the unique value of b > 1 for which the graphs of 
Fb( x )  and x intersect at just one point by solving the system of two equations , 

{ Fb ( x ) = x ,  F£ ( x ) = 1} ,  ( 6) 

in the two unknowns b and x ; see FIGURE 5. These two equations are simply 
{ b x  = x , b x ln b  = 1} , 

from which it immediately follows that 
1 = b x lnb  = x lnb  = ln( b x )  = ln x ,  

( 7) 

providing tl1e solution to (6): x = e and b = elle , the latter of which may be called the 
e 1" root of e !  
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F I G U R E 5 
The graph of Fe'l' (x) = e x fe tangentially intersecting the line y = x at the point (e , e). 

1 1 5  

Therefore, we seek to solve (4) only for 0 < b < e1fe . Furthermore, while there may 
be other ways to solve this equation (see items i. and ii . in Section 4), we wish to use 
the iterative process that was outlined in Section 2 for the case b = 1/2.  To do so, we 
employ the methods given in [3] (see especially Chapters 3-6, 12), which introduces 
the mathematics of chaos using a dynamical systems approach. This involves analyzing 
the evolution of fixed points of a family of functions as the parameter of the family 
varies. In fact, our present query is framed within the same context: our family is 
defined in (5), with parameter b. For a given b E (0, e11e ), we are attempting to find 
the fixed point of Fb( x )  by analyzing the orbit of the initial input (seed), b ,  under 
iteration of Fb . (While this seed is a natural choice for us, it is wise to choose seeds 
more deliberately in general; see Chapter 16 of [3] . )  

We use the methods of [3]  in two cases: 1 < b < e1/e and 0 < b < 1 .  For 
b E (1 , e 11e ), the graph of Fb( x ), being qualitatively the same as that of F..j2( x )  
(see FrcuRE 6), has two fixed points. At the lower fixed point I F£ (  x ) I <  1 ,  while at the 
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F I G U RE 6 
The graphs of F /2( x)  = ( /2)"" and x, as well as the orbit of the seed /2 under iteration of 

F /2' approaching the lower fixed point of F /2' which is x = 2.  
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upper fixed point, I Fi ( x ) I >  1 (this i s  clear since the slope of  y = x itself i s  1) .  
Therefore, the lower fixed point is attracting and the upper fixed point is repelling. 
Orbit analysis readily reveals that for any seed chosen less than the value of the upper 
fixed point, its orbit will be attracted to the lower fixed point . For any seed greater 
than the upper fixed point, however, its orbit will diverge to oo .  Luckily, our seed b is 
in the basin of attraction of the lower fixed point ! 

We can conclude, therefore , that for b E (1 ,  e l!e ), the limit b n 00 exists and yields 
the value of one of the two solutions to (4), namely the lower fixed point. Before we 
move on to the second case, consider the endpoints of the first case: 1 n oo = 1 is 
tlivial, and we have seen b = e1/e in FIGURE 5. In fact, we know that F; ,1, (e) = 1, so 
that a saddle-node bifurcation should occur at the parameter value b = e1fe. Indeed, 
Fb has no fixed points for b > e1/e ,  one fixed point for b = e1fe , and two fixed points 
(one attracting and one repelling) for 1 < b < e1fe . We shall revisit this upper 
endpoint below. 

To analyze the case 0 < b < 1, let us get better acquainted with the family of 
functions (5) for such values of b ; FIGURE 7 shows five members .  Clearly, for 
b E  (0, 1), the function Fb will have exactly one fixed point, which will necessarily be 
in the interval 0 < x < 1. This fixed point will be attracting or repelling depending on 
whether the derivative F/; , evaluated at the fixed point, will be less than or greater 
than 1 in magnitude. Moreover, a period-doubling bifurcation will occur at the value 
of b for which the derivative is equal to - 1 .  We can find this particular parameter 
value and corresponding fixed point by solving the system (6) again, except that we 
replace the 1 on the 1ight side of the second equation with - 1. Solving as before, it is 
straightfmward to show that the solution is b = (1/eY and x = 1/e .  (The clitical 
parameter values b = el!e and b = (1/e)e were found only empirically in [1 ] . )  
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The graphs of F1/ x )  = b "",  for b =  1 /40, 1 / 10, 1 /5,  1/3,  and l/2,  along with the line y = x .  

To better understand the saddle-node bifurcation at b = e1fe z 1 .44 and the 
peliod-doubling bifurcation at b = (1/eY z . 0660, we plot two versions of a bifurca
tion diagram in FIGURE 8. Let us start in the upper right corner of the top diagram, at 
the point (e1 /e ,  e). This point on the bifurcation diagram signifies that for the base 
value b = e1fe , the corresponding function from the family, Fe'!•· , has a fixed point 
x = e. To the light of this point, i . e . ,  for larger values of b, there are no fixed points. 
When b becomes smaller than e1fe (but larger than 1), we know that there are , in 
fact, two fixed points of Fb . The upper fixed point is repelling, however, and so the 
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(b) 

Two bifurcation diagrams for F!J( x )  = b "',  the first for 0 < b < e 1 1•· and the second for 
0 < b < 0. 1 .  

upper fixed point branch (which would trace a curve upwards and to  the left of 
(elle , e)) does not appear in this bifurcation diagram. Only the lower (attracting) fixed 
point branch appears . 

Although it is not apparent in the bifurcation diagram, something special occurs at 
b = 1 ,  for there is suddenly only one fixed point of Fb here. This would be seen in the 
repelling fixed point branch, if it were present. It would increase without bound, 
as)'lnptotically approaching the line b = 1, since as b decreases to 1, the upper 
(repelling) fixed point increases to oo .  On the other hand, since the attracting fixed 
points change continuously as b decreases through 1, the attracting fixed point branch 
is uneventful at (1 ,  1) . 

The single fixed point branch of the bifurcation diagram continues down to the 
point ((1/eY, 1/e), where the period-doubling bifurcation occurs (see the second 
graph in FIGURE 8). Indeed, as b decreases through (1/e)e ,  the attracting fixed point 
branch bifurcates into an attracting 2-cycle branch. The remaining fixed points are 
repelling, and hence this fixed point branch for b E (0, (1/eY) does not appear in the 
diagram. For completeness we show, in FIGURE 9, the orbit analysis for a base less than 
(1/eY, namely b = 1/40. Of course, in this case the spiral approaches a 2-cycle 
rather than a fixed point (see FIGURE 3). 
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The graphs of F1 1�0 ( x )  = ( 1/40) "' and x, as well as the orbit of the seed 1 /40 under iteration 
of F1 1�0 , approaching a 2-cycle . 
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Referring to Chapter 16 of [3], we can show that for any b < elfe , b is in the basin 
of attraction of the attractor of Fb( x ), which is simply the lower fixed point branch 
together with the 2-cycle branch (i . e . ,  the first graph of FIGURE 8). Indeed, for 
b < elfe , 

F[; ( b )  = ( ln b ) b b < ( ln e 1f e ) b b = ( 1/e) b b < 1 ,  
provided that b b  < e ,  or equivalently, b in b < 1 .  However, this also follows from the 
fact that b < elfe : 

b lnb < e1f e lne1/ e = e( lf e ) - l < 1 . 
We can now state our main theorem: 

THEOREM .  The limit b n co, defined in (1) and (3), exists , and hence provides a 
solution to b '  = x ,  if and only if b E  [(1/eY, e1f e ] . For b E  [(1/eY , 1] ,  moreover, 
b n co  is the unique solution to b '  = X. 

It remains only to verify the convergence of b n co  when b = (1/ e)e and when 
b = e11e . At both of these endpoints , the fixed points are neutral, since 
I F(1; e )' ( l/ e) I = I F�l! , (  e) I =  1. Through orbit analysis, it is straightfmward to show 
that the fixed point of F(l/e)

'( x ), namely 1/e,  is weakly attracting. Essentially, this 
desc1ibes the fact that ((1/ eY) n co  exists, but that the convergence of the orbit to 1/ e 
is extremely slow. Similarly, the fixed point of F

e
l;e ( x ), namely e, wealdy attracts seeds 

less than e but weakly repels greater seeds . Since the seed we use in this case, namely 
the base elfe , is less than the fixed point e (lucky again!) ,  we have (el/e ) n co  = e .  

4. Exp l oratio n 

We propose six avenues for further investigation: 
i .  Equation (4) has at least one solution for all b E (0, e1/e ] (see FIGURES 4 and 5). 

As previously stated the solutions to (4) for 0 < b < (1/eY ,  as well as the upper 
fixed points for 1 < b < e1/e , are precisely the repelling fixed points missing 
from the bifurcation diagrams of FIGURE 8. How can the repelling fixed points be 
found? What is the behavior of the fixed point as b � 0, i .e . ,  what does the 
repelling fixed point branch for 0 < b < (1/e)e look like? A nice graphical 
project is to plot the repelling fixed point branches where they belong in the 
bifurcation diagram. 

ii. W1ite b = e" ,  so that the equation b '  = x becomes e '" = x. Solve this last 
equation for a as a function of x. Show that this function is shictly increasing 
for 0 < x < e with image - co  < a < 1/ e, and strictly decreasing for x > e with 
image 1/e > a > 0. Conclude that for each pair ( x , a) the exponential function 
with base b = e" has a fixed point x. Note that for each a E (0, 1/e), i .e . , for 
each b E  (1 ,  elfe ), there are two pairs ( x 1 ,  a) and ( x 2 ,  a), which correspond to 
the lower and upper fixed points ! (This method gives us a closed form for the 
base given a desired fixed point, but we still do not have a closed form for the 
fixed point(s) given a desired base .) 

iii . Provide a classical proof of convergence for b E [(1/ e)" , elfe ] by considering the 
sequence { a , J:= l where a, = b n n. For 1 � b � e1fe , the proof is straightfor
ward since the sequence is clearly monotone and easily bounded. For (1/eY � 
b < 1 ,  however, the situation is a bit more complicated since the sequence is not 
monotone. Considering r � b < 1 with r � (1/e)e ,  the difficulty of proof in
creases as r decreases to (1/e)e ! 
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iv. For x > 0, define a sequence of functions by fn( x )  = x fi n, so that f1( x)  = x ,  
fi x) = x x , f3( x)  = x < x ' ) , etc. Using a graphing calculator o r  a computer, plot 
fn( x)  for several values of n. How does the lim "' _. 0 +fn( x )  depend on  n? Why? 
Does the sequence of functions {fn( x )}:=l seem to converge pointwise to a limit 
function J( x ) , at least for some interval of values for x ?  How does this relate to 
FIGURE 8? 

v. The reader may have seen a teaser where one begins with superexponentiation: 
for example, solve 

( 8) 
i .e . ,  b fi oo = 2. Assuming the convergence of b fi oo, show that b = /2 (cf. FIGURE 
6). Try solving · b fi oo  = 4 in the same way; what is amiss?  How big can the right 
hand side of (8) be for the assumption of convergence of b fi oo to be valid? On 
the other hand, what information is obtained upon solving (8) if the right hand 
side is " too big"?! 

vi. Consider the implications of the tautology ( x lf x ) x  = x (x > 0), and relate your 
findings to item ii. 

Acknowledgment. The author wishes to thank Dr. Loren Pitt, Dr. Douglas Szajda, and the referees for 
several helpful suggestions. 
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When is  the Prod uct of Two Ob l ong 
N umbers Another Ob l ong? 

T R Y G V E  B R E I T E I G  
Agder Col lege 

N -4604 Kr ist iansand 
Norway 

For centuries, mathematicians have been fascinated by the association of numbers 
with geometric patterns, such as squares or triangles . A less-studied example of this 
genre-oblong numbers-is the occasion for a nice student investigation: find pairs of 
oblong numbers whose product is also an oblong number. This activity has historical 
resonance, and it involves the gathering of data and the search for patterns , the 
formulation of general results , and the use of Pell's equation. 

Oblong nu mbers are numbers of the form a(a + l), where a is a positive integer. 
The first few oblong numbers are 2, 6, 12, 20, and 30. The name refers to the 
geomehic form by which these numbers may be represented. 

1 .  H i stor ica l perspectives 

Greek mathematicians found the relations between numbers and geomehical form of 
great interest; they studied polygonal numbers of different shapes . A well-known 
source is the arithmetic book Introductio Arithmeticae by Nicomachus (ca. 100 AD). 
Number patterns and their geometrical representations in general, and square , 
oblong, and hiangular numbers in particular, play an important role in Nicomachus' 
work 

This interest extended beyond the Greeks . Anicius Boethius (ca. 475-.524) holds a 
special position among those who passed on the philosophical heritage of the classical 
age to medieval Europe. The bridge Boethius built from Greek culture and mathe
matics to the European culture of the middle ages is of historical and philosophical 
significance . His translations and revisions of Greek books , on numbers , astronomy, 
music, and logic, are parts of the b1idge . So is his textbook on numbers , De 
Institutione Arith metica -even if it is, mathematically speaking, an uncritical para
phrase (some historians would say a translation) of Nicomachus' Introductio Arith 
meticae from Greek to Latin. According to Burton [2, p. 241] this book held an 
authmitative position for about a thousand years . It does not contain algebraic 
symbolism. 

Boethius points out many number relationships and relates them to his philosophi
cal view of a pattern-governed universe. The following examples may show patterns in 
the world of numbers : 

(i) An oblong number is the sum of consecutive positive even numbers , starting 
from 2: 2 + 4 + 6 + · · · + 2 n .  A square is similarly the sum of consecutive odd 
numbers , starting from 1: 1 + 3 + 5 + . .  · + (2 n - 1) .  

(ii) An oblong number is twice a hiangular number. 
(iii) The sum of two consecutive triangular numbers is a square . 
(iv) The sum of two consecutive squares added to the square of the oblong number 

between them is a new square number. 
(v) The sum of two consecutive oblong numbers added to tvvice the square 

betvveen them is a square . 
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(vi) An oblong number added to the next square is a triangular number. 
(vii) A square plus the next oblong number is a triangular number. 

(viii) A number plus the square of that number is an oblong number. 

1 2 1  

How would we prove these relations? Most of them can be modeled by geometric 
diagrams.  The relations in (i) may be represented as in FIGURE 1; another approach 
appears in this MAGAZINE [3] as a Proof without Words. 

F I G U RE 1 
Pattern in oblongs and squares. Geometric proof that E;'� 1 2 i = n( n + 1) and that 

E;'� 1 (2 i - 1) = n2 . 

Relations (ii) and (iii) are also easily illustrated on well-known, simple figures. 

F I G U RE 2 
Number identities proved geometrically. 

All the relationships may be expressed in a symbolic form. The symbolic language 
of algebra is most useful to express them precisely and prove them. For example, (iv) 
says 

Properties (v), (vi), (vii), and (viii) also have obvious algebraic representations: Let 

Tn = n ( n2+ I )  denote the nth triangular number. Then (v), (vi), (vii), and (viii) can all 

be written as algebraic identities: 

( v) ( n - 1) n + 2n2 + n( n + 1) = (2n )2 ( vii) 

(vi)  ( n - 1) n + n2 = T2 n - 1  ( viii) 

n2 + n( n + 1) = T2n 
n2 + n = n( n + 1)  
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Greek mathematicians did not use our algebraic symbolism. The number relation
ships they found, like the previous examples, were verified by numerical examples and 
geometrical proofs .  

Numbers play a substantial role in Boethius' philosophy. Squares and oblong 
numbers are basic: 

. . .  all things consist of the same nature and then of the nature of 
another, and . . .  this can first be seen in numbers . . . .  

From squares and from figures longer by one side [ = oblong numbers] 
the idea of every form takes its being. 

The fact that the entire development of all forms may be seen to arise 
from these two forms should be noted with no small consideration. 

(Boethius , in De Institutione Arithmetica; see 5, p .  159]) 

In the spirit of Boethius we add two more number relations: 
(ix) Eight times a triangular number is one less than a square . 
(x) Suppose that a square n2 is also a triangular number Tm. Then twice the 

triangular number Tm- n is also triangular. 
These relations are expressed algebraically as follows : 

n( n + I) 2 ( ix) 8 2 + 1 = (2 n  + 1 )  (x) n2 = Tm <=> T2 n - m- l  = 2Tm - n 
FIGURE 3 illustrates (ix) and (x); note the use of a geometric proof. 

F I G U R E  3 

Geometric proof of number relations (ix) and (x). The right figure shows 
the equivalence between 62 = T8 and T3 = 2T2 . 

2 .  Investigating num ber patterns 

The product of two square numbers is another square . This suggests an analogous 
question for oblong numbers : 

When is the product of two oblong numbers an oblong number? 

Obviously, the product of two consecutive oblong numbers is another oblong: 
( x  - I) x · x ( x + 1) = ( x 2 - l) x 2 • 

To solve the general problem, however, we have to solve the Diophantine equation 
x ( x + I) y ( y + I) = z ( z + I) , ( I ) 

a fourth-degree equation in three unknowns.  The multiplication seems to make it hard 



M A T H E M A T I C S  M A G AZ I N E  VO L .  7 3 ,  N O . 2 ,  A P R I L  2 0 0 0  1 2 3 

to model by a diagram. Since we aim not to prove a general property of figurate 
numbers but to find numbers satisfying a given condition, the situation seems to call 
for a search and some pattern recognition. 

Generating numbers We will find numerical solutions, search for patterns, and 
then move between numerical and algebraic modes of thinking. 

A computer program can generate triples ( x , y, z )  satisfying (1) .  Since (1) is 
symmetric in x and y, we may look for triples where x < y ;  we will list results in 
order of y. (We omit in the program the trivial triples (0, k ,  0) and also the solution 
just mentioned, (k ,  k + 1, k 2  + 2k ) . )  Following is a simple BASIC program to gener
ate the list: 

1 0  FOR Y = 2  TO 2 0 0 0  
2 0  FOR X = l TO Y- 2 
3 0  U = X * ( X + l )  * Y *  ( Y+ l )  
4 0  Z = INT ( SQR ( U )  ) 
5 0  I F  Z *  ( Z + l )  = U  THEN PRINT X , Y , Z 
6 0  NEXT X 
7 0  NEXT Y 

The numerical results invite closer investigation: 

TA B L E  1 Integer solutions ( x ,  y ,  z )  of equation (l), where x < y 

X y z X y z 

1 2 3 1 1  574 6600 
1 14 20 12 574 7175 
2 14 35 12 674 8424 
2 34 84 13 674 9099 
3 34 119 13 782 10556 
3 62 216 14 782 1 1339 
4 62 279 3 870 3015 
1 84 119 62 870 54404 

14 84 1224 14 898 13020 
4 98 440 15 898 13919 
5 98 539 15 1022 15840 
5 142 780 16 1022 16863 
6 142 923 4 1 121  5015 
2 143 351 62 1121  70091 

14 143 2079 16 1 154 19040 
6 194 1260 17 1 154 20195 
7 194 1455 17 1294 22644 
7 254 1904 18 1294 23939 
8 254 2159 2 1420 3479 
8 322 2736 143 1420 203840 
9 322 3059 18 1442 26676 
2 341 836 19 1442 281 19 

34 341 11780 19 1598 31 160 
9 398 3780 20 1598 32759 

10 398 4179 20 1762 36120 
3 480 1664 21  1762 37883 

34 480 16575 4 1767 7904 
10 482 5060 98 1767 174096 
1 1  482 5543 21  1934 41580 

1 492 696 22 1934 43515 
84 492 41615 



1 24 © M AT H E M AT I CA L  A S S O C I AT I O N  O F  A M E R I C A  

Looking for patterns , our first question may be :  Are there any recursion relations? 
For f'ach value of x there are obviously many solutions . Collecting hiples with the 
same x may reveal a pattern. For example, for x = 1 ,  we get the following list, and a 
pattern starts to appear: 

TA B L E  2 Solutions where x = 1 

X 
y 
z 

1 
0 
0 

1 
2 
3 

1 
14 
20 

1 
84 

1 19 

Here we observe the recursive pattern 
X 11 = 1 ; Y" = 6 y" - l - Y11 - 2 + 2 ; 

1 
492 
696 

1 
2870 
4059 

1 
16730 
23660 

The starting triples are (1 ,  0, 0) and (1 ,  2, 3), and the following triples are recursively 
defined. Thus we conjecture one infinite string of solutions of the Diophantine 
equation (1) . We will generalize this conjecture and, in Section 3, show that the 
conjecture is sound. 

The case for x = 1 appears atypical; here we observe just one recursive string. So 
let us look at the case x = 2. The recursive relationships will become clearer if we split 
the triples into two strings , extend the list, and adjust the starting numbers to clmify 
each pattern . 

TA B L E  3 Solutions with x = 2 

X 2 2 2 2 2 2 
y 0 1 14 143 1420 14061 
z - 1  3 35 351 3479 34443 

X 2 2 2 2 2 2 
y 0 3 34 341 3380 33463 
� 0 8 84 836 8280 81968 

The starting values are different in each string, but the recursion relation is the 
same. Again by observation, this is 

X 11 = 2 ; y, = 10 y, _ 1 - y11 _ 2 + 4 ; Z 11 = 10 z 11 _ 1 - Z 11 _ 2 + 4 .  
What happens for larger x ?  We look in the same way at the case x = 3 .  These two 

strings appear: 

TA B L E  4 Solutions with x = 3 

X 3 3 3 3 3 3 
y 0 2 34 480 6692 93214 
�· - 1  8 1 19 1664 23183 332904 

X 3 3 3 3 3 3 
y 0 4 62 870 12124 168872 
z 0 15 216 3015 39201 545805 
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Both shings are produced by the same recursion relation: 

X 11 = 3 ; Y" = 14 y" - l - Y11 - 2 + 6 ;  Z 11 = 1 4  Z 11 _ 1 - z 11 _ 2 + 6 

with different initial values . 
The case x = 14 is especially interesting; it gives four strings of solutions : 

TA B L E  5 Solutions with x = 14 

X 14 14 14 14 
y 0 13 782 45371 
z - 1  195 1 1339 657495 

X 14 14 14 14 
y 0 15 898 52097 
z 0 224 13020 754964 

X 14 14 14 14 
y 2 1 84 4899 
z - 36 20 1224 71000 

X 14 14 14 14 
y 1 2 143 8320 
"' - 21 35 2097 120575 

all of which obey the same recursion relation: 

X 11 = 14 ; Yn = 58 Yn - l - Y11 - 2  + 28 ; z " = 58 :::: 11 _ 1 - Z 11 _ 2 + 28 . 

Now a pattern emerges in the recursion formulae themselves .  The following general 
form includes all the preceding recursion formulae : 

x " = k ; y" = (4k + 2) y11 _ 1 - y11 _ 2 + 2k ; Z 11 = (4k + 2) Z 11 _ 1 - z 11 _ 2 + 2 k .  ( 2) 

The initial values for each k have to be determined, and each pair will give rise to a 
chain of solutions . In Section 3 we prove that these chains give all solutions of (1) .  

We have seen a web of recursive strings of solutions . Our next question may be: 
Are there any other internal relations between solutions? From the data in Table 1 we 
observe that the solutions appear in related triplets . This relation can be illustrated by 
the following examples .  

( 2 , 14 , 35) 
( 2 , 3 , 8) 

( 2 , 34 , 84) 

( 2 , 143 , 351) 
( 2 , 34 , 84) 

( 2 , 34 1 , 836) 

( 14 , 143 , 2079) 
( 3 , 34 , 1 19) 

( 34 , 341 , 1 1780) 

This triplets relationship is described by (a ,  b, r) - (a ,  c ,  s) - (b ,  c ,  t ), where a <  b 
< c, in the following way: If (a ,  b ,  r) is a solution, then there is another one with the 
same x ,  say (a ,  c, s) ,  and also a third one , related to them by having the form (b ,  c, t) .  
The solution (a ,  b ,  r)  "gives birth" to the two others . This relation is illustrated in 
FIGURE 4 .  
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(2 , 3 , 8) 

/ �  
( 2 , 34 , 84) 

/ �  
{2 , 34 1 , 836) (34 , 341 , 1 1780) 

F I G U R E 4 

( 3 ,  34 , 1 19) 

The solutions appear as related hiplets: A "mother" solution with two "children." 

Next we ask: Can the solutions be expressed by explicit formulae? To put these 
observations into a more precise form, we Will use algebraic expressions for the 
solutions . We have already mentioned the solutions ( x ,  y, z ) = (0, k, 0) and 

X = k ; y = k + 1 ;  z = P  + 2 k  (3) 

for k = 1 ,  2, 3 ,  . . . .  If we start with the solutions given in (3) as  the "mother 
generation," what triplets are generated? As Table 6 illustrates, each solution gener
ates two more. The upper grid shows the "mother" triples , all of type (3); the lower 
grids show the corresponding triples in each case .  

TA B L E  6 Every solution generates two more 

X 1 2 3 4 5 6 
y 2 3 4 5 6 7 
z 3 8 15 24 35 48 

X 1 2 3 4 5 6 
y 14 34 62 98 142 194 
z 20 84 216 440 780 1260 

X 2 3 4 5 6 7 
y 14 34 62 98 142 194 
z 35 1 19 279 539 923 1455 

From these facts we may, by observation, find algebraic expressions for classes of 
solutions. Since the second difference in y is constant, the formula for y is a 
polynomial in the variable x of degree 2. Similarly, z is expressed by a polynomial in 
x of degree 3. By using undetermined coefficients , we find the formulae 

X = k ; y = 4P + 8k  + 2 ;  z = 4 k 3  + 10k 2 + 6k  (4 )  

for entries in  the middle grid of  Table 6, and 

X = k + 1 ; y = 4P + 8k  + 2 ;  z = 4P + 14P + 14k + 3 (5)  

for entries in  the bottom grid. 
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A simpler description of the latter family of triples is obtained by retarding the 
parameter k by 1 to obtain 

x = k ;  y = 4P - 2 ; z = 4P + 2 k 2 - 2 k - 1 ( 6) 
for k = 2, 3, 4, . . . .  All of the triples generated by (4) and (6) are solutions of the 
Diophantine equation (1) ,  as is easily verified algebraically. 

We could continue using the same method and find formulae for the next 
generation of solutions , based upon the numerical solutions established, until the 
situation grows too complicated or we run out of numerical data. The solutions we 
find in this way are only partial, but we see that there are infinitely many solutions, 
and that explicit expressions exist for classes of solutions. 

3 .  Re l ations to the Pe l I equation 

Our problem is to find all triples of integers x ,  y ,  and z satisfYing equation (1) :  
x( x + 1 )  y ( y + 1 )  = z ( z + 1) . 

We observe immediately that x and y appear symmetrically. 

Chains of solutions Suppose that ( x ,  y, z )  is a solution of (1) .  Let us fix x = k and 
look for more solutions with this x. For simplicity, we put k(k + 1) = d; then (1) gives 

dy ( y + 1) = z ( z + 1) , 
which is equivalent to 

( 2 z + 1) 2 - d(2 y + 1) 2 = 1 - d .  
Substituting u = 2 y + 1 and v = 2 z + 1 produces the equation 

v2 - du2 = 1 - d .  
Equation (7) can be  solved using the theory o f  Fell 's equation 

v2 - du2 = 1 ,  

( 7) 

( 8) 
an interesting Diophantine equation in its own right, well known in number theory 
(see, e .g . , [1 , Ch. 8], or [4, Ch. 8.2]). There is a " fundamental solution" ( v1 , u 1 ) of 
equation (8), which generates a complete set of solutions in the following manner. 

The equation v� - du� = 1 may be written in the surd form 
( vi + ulv'd) ( vl - ulfcl) = l. 

Raising this to the nth power, for any integer n ,  yields 
( V" + u n  fcl) ( Vn - un fcl) = 1 = v;, - du� ,  

where V11 ± u n fcl = ( v1 ± u 1 fcl)" .  The solution in integers of v2 - du 2 = 1 are pre
cisely of the form ( v, u) = ( ± V11 ,  ± u 11 ) . When d = k(k + 1), the fundamental solution 
is ( v, u) = (2k + 1, 2). 

Now suppose we have the more general equation v2 - du2 = c ,  where c is an 
integer. Then, given any particular solution ( v, u) = ( p ,  q ), we can generate infinitely 
many additional solutions from the relation 

V - ufcl = ( p - qfcl) ( Vn - Un Jd) , 
where v,; - du � = l. 
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In  the case of  equation (7), with d = k(k + 1), we may start with the solutions 
(v , u) = (1 , 1) and (v , u) = ( - 1 , l) and obtain a chain of solutions. 

Thus if ( v11 , u 11 ) is a solution of (7), then also 

( v" + u " v'k ( k + 1) ) ( ( 2 k + 1) + 2 v'k ( k + 1) ) 

= ( (2 k + 1) v" + 2k ( k + 1 )u 11 )  + (2 v" + (2 k + 1 )u " ) v'k ( k + 1) 

yields a solution of the same equation (7). From an initial solution we thus get a chain 
of solutions ( v11 , u ,) where 

V11 + 1 = (2 k + 1) v" + 2k ( k + 1) tt 11 ; u 11 + 1 = 2 V11 + (2 k + 1 )u 11 • 

Letting 

x" = [ �: ] and M = [ 2" + 1 
2 

2F + 2 k ] 
2k + 1 , 

( 9) 

equation (9) can be written in the form X11 + 1  = MX11 • The matrix M satisfies its own 
characteristic equation, which is easily seen to be ((2 k + 1) - M )2 - 2 · 2k(k + 1) = 0 
or, equivalently, M 2 - 2(2k + l)M + I =  0. This implies that 

V11 + 1 = 2(2 k + 1) v" - V11 _ 1  and tt 11 + 1 = 2(2 k + 1) tt 11 - U 11 _ 1 . 

Since tt 11 = 2 y" + 1 and V11 = 2 z 11 + 1 ,  we deduce the recursion formula (2) 

X 11 = k ; Y" = ( 4k + 2) Yn - 1  - Y11 - 2 + 2k ; Z 11 = (4k + 2) z 11 _ 1 - z 11 _ 2 + 2k , 

which we conjectured in Section 2. 
Thus, for any value x = k , we find infinitely many solutions . The starting pairs 

( v0 ,  u0 ) = (l ,  1), and ( v0 ,  u0 ) = ( - 1 , 1) give two chains of solutions , which are differ
ent except for k = l .  For some k , however, we may have more initial values .  For 
k = 14, for instance , the pairs ( v0 , u 0 )  = (41 , 3) and ( v0 ,  u0 )  = ( - 41 , 3) will generate 
two chains different from the previous ones, as observed in Table 5 .  

Triplets of  solutions Let j( x ) = x( x + l). The solutions appears in triplets , of the 
form 

( a , b , r ) - ( a , c , s ) - ( b , c , t ) ,  

where it tums out that, since f(a)j(b) = f( r ), f(a)f(c) = j(s) , and j(b)f(c) = j(t) ,  it 
follows that f(r)f( s )  = (j(a))2j(t) . By symmetry, f( s )f( t ) = (j(c))2f(r ) and 
f(r)f( t ) = (j(b))2f(s) . Let us look at this more closely. From the recursion it follows 
that if (a ,  b ,  r ) is a solution of (1) , then so is (a ,  c, s) , where 

(2 s  + 1) + (2c + 1) v'a( a + 1) 

= ( ( 2 r + 1) + (2b  + 1) v'a( a + 1) ) ( ( 2 a  + 1) + 2v'a( a + 1) ) . 

Comparing the surd pmt and the integer part on both sides above gives 

c = 2 ab + a + b + 2r  + 1 ;  s = 2 a2b + a2 + 2ab + 2 ar + 2 a  + r . 
Thus c is symmetlic in a and b .  Since ( b ,  a, r) is a solution, so is (b ,  c, t) , where 

t = 2 ab 2 + 2 ab + b 2 + 2br + 2b  + r .  
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4 .  Ed u cati ona l perspectives 

Working on polygonal numbers can give students rich experiences with investigations, 
search for patterns ,  and deductive study of equations, and may also lead into parts of 
number theory. One nice source of tasks like this is [6]. Following are some suggested 
related problems , all of which lead to Fell's equation. 

1 .  Study numbers of the form n(n + 2): When is the product of two numbers in 
this family another one of the same form? Generalize it to numbers of the form 
n(n + k) where k is any positive integer. 

2. Study other classes of polygonal numbers : When is the product of two triangular 
numbers again triangular? (Squares are not interesting, because the set is 
obviously closed under multiplication.) But when is the product of two pentago
nal numbers another pentagonal? When is the product of two hexagonals again 
hexagonal? And so on. Here, the algebraic formulae for polygonal numbers may 
be useful: triangular: n2/2 + n/2; square : n2 , pentagonal: 3n2/2 - n/2; hexag
onal: 2n2 - n; etc. 

3. Study relations among different polygonal numbers : When is a triangular num
ber also a square? For any integer k, what triangular numbers are k times a 
square? 

4. When is a triangular number twice a triangular number? (FIGURE 3b shows the 
relation between this and the preceding problem.) For any integer k ,  what 
triangular numbers are k times a triangular number? 

Acknowledgments. Thanks to Bob Bum and to anonymous referees for useful suggestions . 

R E F E R E N C E S  

l .  W. W. Adams and L. J .  Goldstein, Introduction to Number Theory , Prentice Hall, Englewood Cliffs, NJ, 
1976. 

2. D .  M. Burton, History of Mathematics: An Introduction, third ed . ,  W. C.  Brown Publishers, Boston, 
MA, 199 1 .  

3 .  J .  Lehel, Proof without words: the sum of  odd numbers , this MAGAZINE 6 4  ( 1991), p. 103. 
4. W. J. IeVeque, Fundamentals of Number Theory , Addison-Wesley, Reading, MA, 1977. 
5. M. Masi, Boethian Number Theon), a translation of the De Institutione Arithmetica, Rodopi, 

Amsterdam, Holland, 1983. 
6 .  J .  H .  Conway and R. K. Guy, The Book of Numbers, Copernicus, New York, NY, 1996. 

The following problem, proposed by H.T.R.  Aude of Colgate University, 
appeared as Problem No. 1 30 in the March 1937 issue of the Magazine: 

A man (living now) states that he was x years old in the year 
x2 • He adds , If to the number of my years you add the number 
of my month, it equals the square of the date (i .e . , the day of 
the month) of my birthday. When was he born? 

See page 1 34 for the answer. 
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Introduction Almost every textbook that offers an elementary proof of the classical 
law of quadratic reciprocity follows a pattern laid down by Gauss in his third proof of 
this famous law. They begin with a lemma named in Gauss's honor and after some 
manipulations with the greatest integer function, they complete the proof by counting 
lattice points in the X-Y plane (see, for example [2], [5], [6]). The lattice point 
argument that clinches the proof in the end is actually due to Eisenstein [1 ] .  
Eisenstein's half-forgotten paper contained other important innovations that were 
entirely lost until quite recently. In a fine piece of historical scholarship, Lauben
bacher and Pengelley [4] have displayed the gem-like qualities of Eisenstein's entire 
presentation. A true piece of art has now been fully restored and made whole again! 
What everyone missed until [4] was Eisenstein's replacement of Gauss's lemma by a 
much easier to use result rightly designated in [4] as "Eisenstein's lemma." Eisenstein 
used his lemma to give a remarkably direct and insightful proof of the classical law of 
quadratic reciprocity. As is amply demonstrated in [4], Eisenstein's proof simplifies 
and improves upon Gauss's third proof at every step and truly deserves to replace the 
standard proof in the textbooks . In order to add weight to their argument we show 
here that Eisenstein's entire presentation along with his lemma generalize nicely to 
give a direct proof of the quadratic reciprocity law for Jacobi symbols. 

Jacobi's reciprocity law Throughout this note, a small Latin letter denotes an 
integer. The letter n will always denote an odd integer greater than 1. If n = p is 
prime, and p does not divide k, the Legendre symbol ( % J is equal to 1 if there is an 
integer solution to the congruence x 2 = k(mod p). We set ( % )  = - 1 if there is no 
such solution. (In general, ( % ) is set equal to 0 if p divides k, but this case is of no 
interest to us.) The Jacobi symbol is a natural generalization of the Legendre symbol 
to the case where n is composite . By the fundamental theorem of arithmetic, we can 
factor n uniquely as a product of odd primes : 

n = p � 1  • • •  p;' '  where t � 1 and n ; > 0 for all i .  

We define the Jacobi symbol { � )  only in the case where k is relatively prime to n ,  by 

1 3 0 

( !5_ )  = n (!5._ ) " ' n i = l  P; 
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which has a value of ± 1 since none of the p; divides k .  The quadratic reciprocity law 
for Jacobi symbols (or simply "Jacobi's reciprocity law") is a three-part statement: 

1. ( -;.
1 ) = ( - 1)C n - 1) /2 

2. ( � ) = ( - 1)C il 2 - ll /8 

3. If m > 1 is odd and relatively prime to n ,  then ( � ) (;, ) = ( - 1)C "' - 1) ( 1l - 1) /4 .  
The classical law o f  quadratic reciprocity i s  the above statement with m and n being 

distinct odd primes .  
We use the following notation to  introduce Eisenstein's lemma. Let E denote the 

set of all positive even integers . We set Ell = {a E E I a < n} . Let S be any non-empty 
subset of . the integers . For a given m, we write mS for the set {ms I s  E S} . So, for 
example, - 3E7 = { - 6, - 12, - 18} . Also, if d > 1 , we let [ S ]d denote the set of all 
remainders of elements in S modulo d. For example, [ - 3E7 ]9 = {3, 6 , 0} . What is 
referred to in [4] as "Eisenstein's lemma" is the following algebraic formula, when p 
is an odd prime, for the Legendre symbol: 

( � )  = ( - 1) Er ,  where the summation is over all r E [ leE, ] , .  

Our goal here is to show that this formula is valid for the Jacobi symbol as well: 
EISENSTEIN'S LEMMA. ( � )  = ( - l)E r, with summation over all r E [ kEil ), . 
Comment. The set Ell has (n - 1)/2 elements and so does [ lcEil ] ll because two 

distinct elements a1 , a2 E En give ka; = q ;n + r; for i = 1 ,  2, and r1 =I= r2 since k is 
relatively prime to n .  

As one might expect, this more general version of  Eisenstein's lemma i s  somewhat 
harder to prove than the original and we postpone the proof until the final section. 
What we gain in the meantime is direct access to Jacobi's reciprocity law using 
Eisenstein's superior method. Typically, Jacobi's reciprocity law is obtained from 
the classical reciprocity law only after a tedious computation that offers very little 
insight [5] . 

We now show that the three parts of Jacobi's law follow readily from Eisenstein's 
lemma. 

1. With k = - 1 in Eisenstein's lemma, the remainders are the elements of the set 
{ - 2 + n, . . .  , - (n - 1) + n} . Note that L.r = (n - 1)/2(mod 2), since each r is odd. 

2 .  Let k = 2.  First assume that n = 1(mod 4). Then the set of remainders is 
{4 ,  . . .  , 2 · ( n ; l ) } U {2 · ( n ; 3) - n ,  . . .  , 2(n - 1) - n} . The elements of the first set 
are even, while those of the second are odd. Counting the odd elements, we have 
( � ) = ( - 1)C n - l) /4 .  Finally, note that (n - 1)/4 = (n2 - l)j8(mod 2) for either n = 

l(mod 8) or n = 5(mod 8). If n = 3(mod 4) and n > 3 (note that ( � )  = - 1), the set 
f · d · {4 2 · ( n - 3l } u {2 · ( n + l ) - ·  2( - 1) - } A 1 ·  h o re1nmn ers IS , . . .  , -2- -2- n, . . .  , n n . pp ymg t e 

same analysis as above finishes the proof. 
3. (Following Eisenstein .) For a E E,, ,  we have "w = q + .':. with 0 � .':. < 1. Thus, n n 11 

q = [ "�" ] ,  the greatest integer less than or equal to "�" .  Working (mod 2), and 
remembering that a is even and n is odd, the equation ma = qn + r becomes r 
= [ ":;' ] (mod 2). Eisenstein's lemma gives 

( m ) L [ '" a ]  n = ( - 1) " E  E, n • 
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It is now convenient to modify the sum in the exponent. Let c satisfY 0 < c < % . If 
me = q 1 n + r 1 ,  then r 1 > 0 since m and n are relatively prime. Adding this equation 
to m(n - c) = q2 n + r2 gives mn = (q 1 + q2 )n + r1 + r2 with 0 < r1 + r2 < 2n .  Since 
n divides r1 + r2 , we have n = r1 + r2 , and deduce that 

m 
_ 1 = [ n: ] + [ m( n

n
- c ) ] . 

Since m is odd by assumption, [ '�c ] = [ m ( n11- c ) ] (mod 2). An odd c in the range 
0 < c < % corresponds uniquely to an even n - c in the range % < n - c < n. Thus, 
the values of a greater than % can be transformed into the odd values less than % ,  
yielding 

( 11 - 1 )/2 [ ' ]  
L [ r: ]  = _L 1�1 ( mod 2) . 

a E E ., t = 1 
This latter sum has a nice geometric interpretation, illustrated in FrcuRE 1 .  If i = 7, for 
example, there are [ 2:/ ] = 4 lattice points of the form (7, y )  with y > 0 below the 
line Y = !�X. Thus, this sum is simply the total number of lattice points inside the 
triangle ABC.  No lattice points can lie on the diagonal since m and n are relatively 
prime. By symmetry, ( n ) 

( ) E< ·� - '> I" [ "1 ] - = - 1 j l  I l l  
m 

and the sum in the exponent here counts the number of lattice points inside the 
triangle ACD. The total number of lattice points inside the rectangle ABCD is 
( m - 1) /2 · ( n - 1) /2, from which the third part follows immediately. 

D 

10  

.5 

./ 

./ 
./ 

A 5 

v 

v 

v 

10  1.5 

./ 

F I G U R E 1 

Counting lattice points. 

c 

v 
./ 

20 B 

Proof of Eisenstein's lemma In this section we require the basic properties of the 
Euler ¢-function, and Euler's criterion [6] that k < p - 1) /2 = (% ) (mod p)  for p an odd 
prime and ( k ,  p) = 1. The letter d will denote an odd integer greater than 1 that 
divides n = p � '  · . .  p;\ and E(d) = {b E  E l b  < d and (b ,  d) = 1} .  The number of 
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elements in E(d) is cp(d)/2 since an odd c with 0 < c < d and (c ,  d) = 1 always 
corresponds to an even b = d - c with (b ,  d) = 1 .  We can partition the set En as 
follows 

n E, = U -E( d) 
d i n  d 

since a E E, satisfies (a , n) = -J iff a E -JE(d) . If we let r denote a generic element 
of [ kE, ] , and rd an element of [ k  · -JE(d)] ," then, by the comment following the 
statement of Eisenstein's lemma, we have 

( - 1) E r = ( - 1) E<� 1,(E r<� ) . 
Now let b E E(d) and write kb = qd + s where 0 � s < d. If we multiply both sides 
of this equation by -J ,  the relationship -J [ kE(d)]d = [ k  · -JE(d)] , becomes apparent. 
If sd E [ kE(d)]d , then !....1' · sd = rd E [ k  · !....1' E(d)] , and since !:1· is odd, sd = rd (mod 2). ( , (. ( 
Thus, 

( - 1) E r = ( - 1) Ed 1 , (Esd ) 

and we now turn to a detailed study of the set [ kE(d)l c1 • 

( 1 )  

LEMMA 1 .  k c/J(d)/2 = ( - l)Esd (mod d) ,  with summation over all sd E [ kE(d)lc1 .  
Proof (Following Eisenstein .) Let b 1 , . . .  , bq,(d)/2 denote the elements o f  E(d) . 

Write kb; = q ;d + s; for i =  1 ,  . . .  , cp(d)j2 . Let S = {( - l}'' s ; l i  = 1 ,  . . .  , cp(d)/2} . We 
claim that [ S lc1 = E(d) . Assuming this is true for the moment, we have 

cf>(d)/2 cf>(d)/2 cf>(d )/2 
n h; = n ( - 1) ' ' s ; = n ( - 1)" kb; ( mod d) .  i = l i = l i = l 

Since Tif�1>12 b; is relatively prime to d by construction, we can cancel it from the 
first and third products above to obtain Lemma 1 .  To establish the claim, note that 
every element a E [ S ]d is even and satisfies 0 < a <  d and (a ,  d) = 1 .  We need only 
show that ( - 1)'' s ; and ( - l)'js1 are distinct mod d for i =/= j. The only non-trivial case 
is where s; is even and s1 is odd. If s ; = - s1 (mod d), then d l k (b; + h/ Let h; = 2 a; 
'where 1 � a; < % and, similarly, b1 = 2aJ ' Then d l 2 k (a ; + a) or d l ( a ; + a1 ) since 
(d, 2 k )  = 1. But 2 � a ; +  a1 < d, which gives a contradiction. 

LEMMA 2. We have k c/J(d)/2 = ( !5_ )(mod d) if d = p "' , and k cf>(d )/2 = 1(mod d) if d p 
is not a prime power. 

Proof First assume that d = p "' ( p is necessarily odd). Euler's criterion gives 
k ( p - 1) /2 = ( � ) Cmod p), so we are done if m = 1 .  Now assume m > 1. If l � 1 and 
a =  b(mod p 1 ), then a P  = b P(mod p 1 + 1 ) by the binomial theorem. Applying this to 

'< ) ,, _ ,  ( k )p "' _ ,  Euler's criterion m - 1 times, we obtain 7<2 p - 1 P = P (mod p "' ). The left 
hand side is just k c/J(d )/2 and the right side is equal to ( � ) since p m - 1 is odd. 
Now assume that d is not a prime power. We write d = p r' • p�' 2  . . .  p1m '  and assume 
without loss of generality that m1 and m2 are positive . From above, k c/J(d)/2 = 
( k i< p , - 1> P I' ' - ' )< p 2 - 1> P �'r !. . . = 1 (mod p r' ' ) since ( p2 - 1) is even. Similarly, k <P(d)/2 = .1 
(mod p(" ' )  for i =  2, . . .  , t ,  and thus k <P(d )/2 = 1 (mod d). 
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Combining Lemmas 1 and 2 ,  we have ( - l)Es, = { * ) Cmod d) when d = p 111 • Since 
both sides of this congruence are ± 1 and d > 2 this means that ( - l)E•J> "'  = { * ) . 
Thus, Lsp , = LSr :" (mod 2) for 1 :5: m :5: n ; .  Similarly, ( - 1)Es, = 1 if d is not a prime 
power, which says that LSd is even in this case. We now conclude that 

I: O::>c� )  = ( 2: sr 1 + . . .  + l: s;� ) + . . .  + ( L sp ,  + . . .  + l: s;; ) ( mod 2) 
d i n  

= n1 L Sp 1 + . . .  + n 1L sp, ( mod 2) .  
Combining with equation (1) finally gives 

( - 1 ) L r = [ c  - 1) Esl' tr . . .  [ c  - 1 ) L'I'f ' = ( : J " l . . .  ( :t r = ( � ) .  
Eisenstein proved Lemma 1 for the special case d = p ,  an odd prime, exactly as 

above . Since k <f>(d)/2 = k < r - Il /2 = ( * ) Cmod p)  by Euler's criterion, his original 
lemma follows immediately. The proof of the more general "Eisenstein lemma" given 
here is modeled after a proof of Jenkins [3]. Jenkins was the first to notice that Gauss's 
lemma could be generalized from the Legendre symbol to the Jacobi symbol. 
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Solution to Problem 130 (see page 1 29) by Lucille G. Meyer, New Orleans, 
Louisiana. (The problem appeared in 1937 - Ed. ) 

A man living now could not have been 43 years old in 1 849, 
that is 432 • Therefore, the man must have been 44 years old in 
1 936. From the conditions given, 

44 + m = d2 and 0 < m < 1 3  

whence m = 5 i s  the only integral solution, and d = 7. The 
man was born May 7, 1892. 
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Monty H a l l U ses a M i xed Strategy 

H E R B  B A I L E Y 
Rose- H u l ma n  I n st i tute of Tech nology 

Terre Haute, IN 47803 

Introduction Marilyn vos Savant posed a problem [12] simulating a popular TV 
game show hosted by Monty Hall. Her correct solution brought thousands of letters 
telling her that she was wrong. We quote her statement of the problem:  "Suppose 
you're on a game show, and you are given a choice of three doors . Behind one is a car; 
behind the others , goats. You pick a door-say, No. l-and the host, who knows 
what's behind the doors , opens another door-say, No. 3-which has a goat. He then 
says to you, 'Do you want to pick door No. 2?' Is it to your advantage to switch your 
choice?" 

Marilyns phrase "say, No. 3" is a little ambiguous . To clarify this , we note that if 
Doors 2 and 3 hide a goat and a car, then the host opens the door hiding the goat. On 
the other hand, if Doors 2 and 3 both hide goats then the host flips a coin to choose 
between these two doors . A number of interesting articles (e .g. , [3], [7], and [8]) 
analyze games in which the host does not make a random choice in the latter case. 

In 1959, Martin Gardner [6] posed a problem equivalent to Marilyn's game 
involving three prisoners with one to be paroled. Gardner describes the game as a 
"wonderfully confusing little problem."  Another equivalent problem, involving three 
boxes, was posed by S. Selvin [10] in 1975 .  Ed Barbeau [1 ]  has written a good review 
of the literature on Marilyn's game and related problems . A recent paper by 
Fernandez and Piron [4] considers Marilyn's game when the host influences the 
contestant to switch in certain situations so that the game is less predictable ,  and thus 
generates more audience interest. 

Two appealing solutions to Marilyn's game are : 
S l :  After the host shows a goat, the contestant is looking at two closed doors with a 

car behind one of them. Thus there is a 50-50 chance with either door and there is no 
advantage in switching, 

S2: The probability of picking the car with her first choice was 1/3 and this does 
not change when the host shows a goat. Since the car is behind one of the two closed 
doors , the probability is 2/3 that the car is behind the other closed door and she 
should switch. 

In this note , we generalize the game by conside1ing a set of N doors , with a car 
behind one of the doors and goats behind the rest. The sponsors of the show ask 
Monty to give away as few cars as possible . We consider three different generaliza
tions , and in the third one, both the host and contestant use mixed strategies. In 
general, mixed strategy games can only be solved for given numerical values of the 
parameters involved, however in our game there is an explicit solution.  

Generalizations Now imagine a game played with N = 1 1  doors hiding 10 goats 
and one car. The contestant is asked to select 4 of the doors and leave 7 doors 
unselected. We call tl1e selected set L with NL = 4 and the unselected set R with 
NR = 7. Then the host reveals H = 5 doors that conceal goats , say by opening i = 2 
doors from the selected set L and H - i =  3 doors from the unselected set R.  The 
contestant then chooses any unopened door. Should she pick from L or R? This 
example is shown in FIGURE l .  
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Example 1, where the host shows two goats from L and three from R .  

In general, we shall assume that H ,  NL and NR are given,  with NL + NR = N. The 
host opens H of the doors . The contestant's strategy is to pick a door (at random) 
from the remaining closed doors in L or from those remaining in R in order to 
maximize her probability of finding the car. If i is the number of doors that the host 
opens from L, then the host's strategy is to choose i in order to minimize the 
probability that the contestant picks the car. 

The host is not permitted to open all the doors in either L or R, since the 
possibility must remain that the car can be in either subset. To ensure this , we require 
H :::;; NL + NR - 2, i :::;; min( H ,  NL - 1), and i ::::0: max(O, H - NR + 1). In Example 1 ,  
the host has four possible strategies: i = 0, 1 ,  2, or  3. FrcuRE 1 corresponds to  the 
choice i = 2. 

Let P L be the probability that the contestant will pick the car if she chooses at 
random from the remaining closed doors in L. Let P R be defined the same way if she 
decides to pick from R. The values of PL are obtained by multiplying the probability 
NdN that the car is in L by the probability 1/(NL - i) that she picks the car from L, 
given that i t  is in  L. Thus 

Similarly 
NR 1 PR = N NR - ( H - i ) . 

The columns of Table 1 correspond to the four possible strategies (i = 0, 1 ,  2, 3) of the 
host for Example 1 .  The rows correspond to the two possible choices of the contestant 
( L  or R).  The table entries are the values of PL and PR . The last column is the row 
minimum, and the last row is the column maximum. The maximin is the maximum of 
the row minimums and in this example is 0. 127. The minimax is the minimum of the 
column maximums and for this example is 0. 182. 

TA B L E  1 .  Example 1 with NL = 4, NR = 7, and H = 5 .  

i = O  i =  1 i = 2  

PL 
4 1 TI "4 ;;:; 0.091 

4 1 TI "3 ;;:; 0.121 
4 1 TI "2 ;;:; 0. 182 

PR 
7 1 TI "2 ;;:; 0.318 

7 1 TI "3 ;;:; 0.212 
7 1 TI "4 ;;:; 0. 159 

Column 0.318 0.212 0. 182 
Max 

i = 3  

4 1 TI T ;;:; 0.364 

7 1 
Ti s ;;:; o. 121 

0.364 

Row 
Min 

0.091 

0. 127 
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Game I In this game, we require the host to declare his strategy, by opening H 
doors that hide goats , before the contestant makes her choice . The contestant then 
picks a door at random from the remaining closed doors of L or from those of R. We 
assume that the host makes the 'conservative' choice to minimize his potential loss :  
thus in our example , he chooses i = 2 corresponding to the minimax. The contestant 
now compares her probabilities with the host choosing i = 2, and picks from the set L 
with a probability of 0 . 182 of selecting the car. Note that without the hosts help the 
contestant must pick from 1 1  doors with probability of 1/11 of getting the car. 

Malilyn's game is an instance of Game I, since the host must open the door before 
the contestant chooses the subset. For Malilyn's game H = 1, and we let L be the 
door that the contestant initially selects , and R the remaining two doors . Then NL = 1 
and NR = 2. The host has only one choice , namely i = 0 with H - i = 1 ,  thus 
PL = 1/3 and PR = 2/3. Hence she should switch her choice to the remaining door 
in R.  

Game II  In  this game the host and contestant reveal their choices a t  the same time. 
For Example 1 (Table 1) the host again makes the conservative choice of i = 2 and he 
can be sure of losing no more than the minimax of 0. 182. The contestant, unaware of 
the host's strategy, also makes the conservative choice of R so that she can be sure of 
winning at least the maximin of 0 . 127. Thus in this example the host chooses i = 2 and 
the contestant picks from R giving the contestant the probability 0 . 159 of getting the 
car. This is not as high as for Game I but better than without help from the host. 

A second example is shown in Table 2, with NL = 10, NR = 3, and H = 9. 

TA B L E  2 .  Example 2 with NL = 10, NR = 3 ,  and H = 9.  

i = 7 

PL 
10 
39 � 0.256 

PR 
3 
13 � 0.231 

Column 0.256 
Max 

i = 8  

5 
13 � 0.385 

3 
26 � 0. 1 15 

0.385 

Row 
i = 9  Min 

10 
13 � 0.769 0.256 

1 
13 � 0.077 0.077 

0.769 

In this example, we note that minimax = maximin = 0.256 and also that PL > PR in 
each of the columns . The contestant in this example has what is called a dominant 
strategy, since choice L is always better than R .  

When the minimax =I= maximin, as i n  Example 1 ,  then the game i s  said t o  be 
unstable . In this case the contestant can sometimes do better, over the long run, than 
in Game II by mixing her strategies , while the host also mixes his strategies . This is 
Game III as desclibed below. This type game is called two-person, zero-sum, and 
unstable (e .g. , [2] and [ 13]). 

Game III This game is identical to Game II except that it is played many times, 
and the contestant uses a mixed strategy, choosing L with probability x, and R with 
probability 1 - x .  The host also uses a mixed strategy, choosing i with probability p; , 
where the sum of the p ; 's is equal to 1 .  Let y be the expected value of the probability 
that the contestant wins the car. Thus y depends on the strategies of both host and 
contestant . In Example 1 (Table 1), if the contestant chooses x = 1/2 and the host 
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chooses p0  = 1/2, p 1  = 0, p2 = 0, and p3 = 1/2, then y = (0.091 + 0.318 + 0.364 + 
0. 127)/4 === 0.225. 

The contestant seeks a strategy x that maximizes the y that she can be sure of no 
matter what strategy the host chooses .  We will call this maximal y the contestant 's 
optimal outcome, and the corresponding x the contestant 's optimal strategy . The host 
seeks a strategy p; to minimize his maximal expected loss no matter what strategy the 
contestant chooses. These will be called the host 's optimal strategy and outcome. The 
Minimax Theorem of matrix games (e .g. , [2] and [13]) asserts that the contestant's 
optimal outcome is equal to the host's optimal outcome . 

Mixed strategy games can be solved graphically if one of the players has only two 
pure choices .  This is the case in Game III ,  since the contestant. can choose only L or 
R in any given play of the game. The appropriate graph for Example 1 is shown in 
FIGURE 2, where we define a ; = PR( i )  and h; = Pii) .  The a; and h; are given in the 
second and third rows of Table 1 .  The line L0 is a graph of y as a function of x if the 
host chooses the pure strategy i = 0. Thus on this line, if x = 0 then y = a0 , and if 
x = 1 then y = b0 . Similarly, the lines L; pass through the points (0, a ; ) and (1 ,  h;) .  

The heavy line segments in FIGURE 2 form the lower envelope of these lines .  For a 
given x ,  the value of y on the lower envelope is the minimum of the y 's for the four 
pure host strategies. The conservative contestant will then choose the x that maxi
mizes the y on the lower envelope .  For our example, we solve for the intersection of 
lines L1 and L2 to find the optimal x = 7/15 and optimal y = 28/165 ==' 0 . 170. 
Hence the contestant chooses L with probability 7/15 and R with probability 8/15 
and her optimal outcome is 0. 170. By the Minimax Theorem we know that the host 
can also find an optimal strategy ( p 0 ,  p 1 ,  p 2 , p 3) such that his optimal outcome is 
0. 170. 

0 .4  o-----------------o 

lj 

0 X 

F I G U R E 2 
Example 1 with mixed strategies .  

If the host chooses L0 or L3 , then he will lose more than 0 . 170 when the contestant 
plays her optimal strategy. Thus he must choose p0 = p3 = 0, and the optimal strategy 
for the host must include only strategies i 1  and i 2 . A similar graphical solution gives 
the optimal host strategy to be p0 = p3 = 0, p 1  = 1/5 and p2 = 4/5. With this 
strategy, the host's expected loss will never be more than 0. 170, no matter what 
strategy the contestant uses .  
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Game III can also be solved using linear programming, but the graphical and the 
LP solutions are not explicit, since they depend on knowing specific values for NL , 
NR , and H before solving. We now find a solution to Game III resulting in an explicit 
formula for the optimal x ,  optimal p; , and the optimal y in terms of the parameters 
NL , NR , and H. 

First note that the optimal solution Tm a x  of any Game III  must be at  the 
intersection of two of the L; with slopes of opposite signs ; if not, the contestant could 
increase y by increasing (or decreasing) her choice of x. We call these intersections 
viable points and note that for Example 1 there are four viable points as shown by the 
small filled-in circles in FrcuRE 2. For this example , the optimal solution �n a x  i s  the 
viable point with minimal y .  

In the general case, let S( x ,  y )  be the viable point with minimal y .  If S( x ,  y )  =I= �na x  
then 1j will be  less than the optimal y at Tma x  and one o f  the lines intersecting 
at S will pass below Tm a x ·  This contradicts the assumption that �n a x  is on the lower 
envelope ,  and thus S and �n a x  are the same point. 

We ignored two complications in the above argument, namely that one of the 
intersecting lines might be horizontal and that more than two lines could pass through 
an intersection point. The result is essentially the same if these cases are included. 
Note that if there are no viable points , then the lower envelope of the lines L; will not 
have a relative maximum. In this case its maximum will be at x = 0 or at x = 1 and 
the contestant has a dominant strategy. 

We now find a formula for the coordinates of S. The line L; through the points 
(0, a) and ( 1 ,  b) has slope h; - a ; and y-intercept a ; . Thus its equation is 

y = a ; +  ( h; - a ; ) x .  
Solving the equations for L ;  and L1 , gives the intersection point ( x i ,  yi) , with 

x i = ( a1 - a ; ) / ( a1 - b1 + h; - a; ) ,  

YI = ( a1h; - a ; b1 )! ( a1 - b1 + h; - a ; ) ,  

':her� a ; = PR�i )  = Z::: NR _ (1H _ i )  and h; = PL( i ) = ; NL1_ i .  Substituting these equa
tions mto y1 grves 

A ( N - H ) s ( 1 - s ) y -I - ij - sH ( i +j )  + [ sH 2 + sN 2 + 2 s2NH - s2N 2 - 2 sNH ] ' 
where s = NL/N < 1 .  Since the numerator of the above expression is positive , and the 
values of y are positive , then the denominator must be positive . For a given game, the 
numerator and the bracketed terms in the denominator are fixed. Thus to minimize 
y1 , we must maximize 

ij - sH( i  + j )  = ij - sH ( i + j )  + s2H 2 - s2H 2 = ( i  - sH ) (j - sH ) - s 2H 2 . 
Since sH is fixed, we maximize (i - sH )(j - sH ). 

For the intersection of L; and L .  to be a viable point, one of these lines, say L; , must have negative slope, and the otf1er, L1 , must have positive slope. The slope of L; 
is negative if h; < a; which is equivalent to i < sH (by using the equations for a ; and 
b). Likewise, the slope of L .  is positive provided j > sH. Thus (i - sH )(j - sH ) < 0, 
and to make this product as farge as possible, we choose i to be the largest integer less 
than sH and j to be the smallest integer greater than sH. Thus the optimal solution 
�n a x is at the intersection of lines L; and L1 , where 

i = l sH j and j = f sH 1 · 
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Hence for any Game III ,  we calculate sH , i , j , a ; ,  h; , aj , bj , and substitute these into 
the formulas for xi and y1 . Then x1 is the contestant's optimal strategy, and y1 is the 
contestant's optimal outcome. 

By the Minimax Theorem, the host's optimal outcome is equal to the contestant's 
optimal outcome.  Any strategy other than the i and j found above would result in 
increasing the expected probability for the contestant when she plays her optimal 
strategy. Thus the host must use only strategies i and j. We find that pj = 
(h; - a)j(aj - bj + h; - a), by using calculations similar to the above for x 1 .  The 
value of p; is then 1 - pj , since the other p 's are zero .  

For the parameters NL = 4, NR = 7, and H = 5, of Example 1 ,  we have sH 
= N���n = 20/11 ,  and thus i = 1 and j = 2. Using the corresponding a's and b 's 
gives x i = 7/15, y1 = 28/165, p 1 = 1/5, and p 2 = 4/5, as previously found by the 
graphical method. 

As another example, Example 3, let NL = .5 , NR = 3, and H = 4 . Table 3 summa
Iizes the possible pure strategies. 

TA B L E  3 .  Example 3 with NL = 5 ,  NR = 3 ,  and H = 4 .  

i = 2  

PL 
5 

24 � 0.208 

PR 
3 8 = 0.375 

Column 0.375 
Max 

i = 3  

5 
16 � 0.313 

3 
16 � 0. 188 

0.313 

Row 
i = 4 Min 

5 8 = 0.625 0 .208 

1 8 = 0. 125 0. 125 

0.625 

If we play Game III using the parameters of Example 3, then sH = 20/8, i = 2, 
and j = 3. Substituting the a's and b 's gives x 1  = 9/14, y1 = L5j.56 ;:: 0 .268, p2 = 
3/7, and p3  = 4/7. Thus, using her optimal mixed strategy, the expected probability 
that the contestant wins the car is 0.268. 

If we play Game II with the parameters of Example 3, the contestant picks L and 
the host picks i = 3. In this case, the contestant has probability 0.313 of winning the 
car, and she does better if both players use pure strategies rather than mixed 
strategies . 

Closing remarks When the popularity of Marilyn's problem was at its peak, it was 
used in many classrooms as a Monte Carlo simulation study. Two papers desclibing 
these simulations [5], [ 1 1] found that most solvers initially chose the incorrect solution 
sl (no switch), and most stuck to sl even after the simulation indicated that they 
should switch to the other door. The Monte Carlo simulation of Games I, II , and III 
of our paper give the expected results and would make a challenging assignment for a 
computer programming class . 

We have tacitly assumed that the contestant prefers the car rather than the goat . 
This assumption was called into question in a letter from Lore Segal to the editor of 
The New York Times [9], with the comment, "The goat is a delightful animal, although 
parking might be a problem." 
Acknowledgment. My thanks to  David Rader, Jack Kinney, and a referee for their helpful suggestions. 
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A Co nvergence Theorem fo r the R ieman n I ntegra l 

R U S S E L L  A .  G O R D O N  
Whitman Col lege 

Wa l l a Wa l l a, WA 993 62 

Let {j,, } be a sequence of real-valued functions that converges pointwise to a function 
f on a closed and bounded interval [ a ,  b ]  and suppose that each of the functions f,, is 
Riemann integrable on [ a ,  b ] .  Does it follow that the limit function f is Riemann 
integrable on [ a , b ]? If f is Riemann integrable on [ a ,  b ] , is the equation 

fb fb. j =  lim fn 
a n � oo  a 

valid? Since pointwise convergence is a rather mild condition, it is not difficult to 
construct examples (see the next paragraph) to show that each of these questions has a 
negative answer. The goal of this paper is to find further conditions to place on the 
sequence {j,, } in order to obtain positive results. 

To show that the pointwise limit of a sequence of Riemann integrable functions 
may not be Riemann integrable, let {rk }  be a listing of the rational numbers in [0, 1] 
and define 4>n and cf> on [0, 1] by 

if x = r1 , r2 , . . .  , rn ; 
othe1wise ; and cf>( x ) = { 1 ' 

0 ,  
i f  x i s  rational ; 
if x is irrational . 

For each positive integer n ,  the function cp11 is Riemann integrable on [0, 1] since it 
has only a finite number of discontinuities, but the limit function 4> is not Riemann 
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integrable on [0, 1] . As a second example, define h ll and h on [0, 1] by 

h ll ( x ) = { n ,  
0 ,  

if O < x < 1/n ;  
otherwise ; and h( x ) = O . 

In this case, the limit function h is Riemann integrable on [0, 1] but 

0 = 1 1h =I= lim 1 1h ll = l . 
0 n -> oo  0 

These two examples indicate that a convergence theorem for the Riemann integral 
will require some condition in addition to pointwise convergence . 

The simplest convergence theorem for the Riemann integral involves the notion of 
uniform convergence . In order for {j,, } to converge pointwise to f on [ a ,  b ], the 
sequence {j,,( x )} must converge to f( x )  for each x E [ a ,  b ] .  However, the rate of 
convergence may vary with x (this should be evident for the sequences { cpll } and {h ll }) 
and this variability can create difficulties with limit operations .  If the rate of conver
gence is independent of x , the convergence is said to be uniform. More formally, the 
sequence {j,, } converges uniformly to a function f on the interval [ a ,  b ]  if for each 
E > 0 there exists a positive integer N such that lf,, ( x ) -f( x ) l  < E for all x E [ a ,  b ]  
whenever n � N.  Uniform convergence yields the following theorem; the proof i s  not 
difficult and can be found in [2] or almost any other introductory textbook in real 
analysis . 

THEOREM l. Let {j,, } be a sequence of Riemann integrable functions defined on 
[a ,  b ] . If {j,, } converges uniformly to f on [ a ,  b ], then f is Riemann integrable on [a ,  b ]  
andfnbf = lim n _, ,,Jab!,, .  

Uniform convergence is a sufficient condition for a convergence theorem for the 
Riemann integral , but it is by no means a necessary condition. An enlightening 
example is the following: let {en}  be any sequence of real numbers and for each 
positive integer n ,  define 1/Jil on [0, 1] by 

( 
_ { ell sin( mrx ) ,  

1/Jil x ) - 0 ,  
if O :::; x :::; 1/n ;  
if x > 1/n . 

The graph of 1/Jil is one hump of a sine wave with amplitude I ell I and period 2/n . This 
sequence converges pointwise to the zero function on [0, 1] , and it is not difficult to 
see that the convergence is uniform if and only if {e ll }  converges to 0. Since 

1 1 1 1/n . ( ) d ell 171' . d 2c ll 1/Jil = Cn SID n1TX X = - sm lJ 8 = - ,  
o o n1T o n1T 

the sequence of integrals can converge to 0 even if  {e ll }  does not converge to 0. In 
particular, the sequence of integrals converges to 0 if {el l } is bounded. (It is also 
possible for the sequence { Jl l/lll } to converge to 0 when {en}  is unbounded or for the 
sequence of integrals to be bounded but not convergent.) Although the convergence is 
not uniform on [0, 1] for some choices of {c) , the convergence is uniform on [ a ,  1] for 
each 0 < a < 1 no matter what sequence is chosen for {e ll } .  In other words , the 
convergence still exhibits a high degree of uniformity. 

Using some elementary properties of the Riemann integral , the uniform conver
gence result can be extended to sequences that do not converge uniformly but for 
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which the convergence is close to being uniform. Recall the following two results : 
l. If J is bounded on [a, b] and Riemann integrable on eve1y closed subinterval of 

(a , b) , then J is Riemann integrable on [a, b ] .  
2 . If  J i s  Riemann integrable on the intervals [ a ,  c ]  and [c ,  b ] ,  then J i s  Riemann 

integrable on [ a ,  b ]  and Jab J = fr�J + feb f. 
An additional concept that is required is that of a uniformly bounded sequence of 

functions . A sequence {j) is uniformly bounded on [ a ,  b ]  if there is a number M such 
that If,,( x) I :::;; M for all x E [a ,  b ]  and for all positive integers n. For the record, it is a 
routine exercise to prove that a uniformly convergent sequence of bounded functio.ns 
is uniformly bounded. 

THEOREM 2. Let {j,,} be a sequence of Riemann integrable Junctions that converges 
pointwise to a Junction J on [a ,  b ] .  If {j,, } converges uniformly to f on each closed 
subinterval of (a ,  b) and {jn } is uniformly bounded on [a ,  b ] ,  then f is Riemann 
integrable on [a ,  b ]  and fabf = lim n ...., oof)'f,, . 

Proof Let M be a uniform bound for the sequence {jn } on [ a ,  b ]  and note that J 
is bounded by M as well . Since the convergence is uniform on each closed subinterval 
of (a ,  b) , Theorem 1 shows that the function f is Riemann integrable on each closed 
subinterval of (a , b). By property (1) listed above , the function f is Riemann 
integrable on [ a ,  b ] .  

Let E > 0. Choose points c, d E  (a , b) such that c < d, c - a <  E/2M, and b - d < 
E/2M. Since {j) converges uniformly to f on [c ,  d] ,  by Theorem 1 there exists a 
positive integer N such that I J/fn - J/J I < E for all n :::=: N. Then 

� �bf,, - f! l :::;; I{(J:, -f) I + lfl,, - fl l + lfz\J,, -f) I 
< 2M( c - a) + E + 2M( b - d) 
< E + E + E = 3E 

for all n ;:::: N and i t  follows that J)'J = lim 11 _, 00J}'f,, . 

THEOREM 3. Let {jn } be a sequence of Riemann integrable Junctions that converges 
pointwise to a function f on [a ,  b ]  and let a =  c0 < c1 < · · ·  < cq- I  < cq = b be a 
partition of [a ,  b ] .  If {j,,} converges uniformly to J on each closed subinterval of 
(c; _ 1 , c) for 1 :::;; i :::;; q and {j,, } is uniformly bounded on [a ,  bl then f is Riernann 
integrable on [a ,  b ]  and Jab J = lim n ...., oofc;'fn · 

Proof T�e hypotheses of Theorem 2 are satisfied on each of the intervals [ c ; _ 1 , C; ] 
so J is Riemann integrable on [ c; _ 1 , c; ] and 

for i = 1 ,  2, . . .  , q .  By repeated application of property (2) listed above for the 
Riemann integral, the function f is Riemann integrable on [ a ,  b] and b 'f C 'f C· q C b J f = L J ' f = L lim J ' f,, = lim L J 1 fn = lim J f,, . 

a i = l  c i - 1  i = l  rz --t oo ci - 1  n --t x i = l  c i - 1  n --t x a 

This completes the proof. 
As an application of this convergence theorem, let p be a positive integer and 

define a sequence { g) of functions by gn( x )  = cos2 " ( p ! 7T x) .  This sequence con-



1 44 © M AT H E M A T I C A L  A S S O C I AT I O N  O F  A M E R I CA 

verges pointwise on [0 , 1] to the function g defined by 

g ( x )  = { 1 ,  if x = i / p !  for i = 0 ,  1 ,  2 ,  . . .  , p ! ; 
0 ,  otherwise . 

Each of the functions g, is Riemann integrable on [0 , 1] since it is a continuous 
function, the convergence is uniform on each closed subinterval of (( i - 1)/p ! , ijp !) 
for 1 � i � p ! ,  and the sequence {g ,) is clearly uniformly bounded on [0, 1] . By 
Theorem 3, the function g is Riemann integrable on [0, 1] (note also that g is 
bounded and has only a finite number of discontinuities) and the sequence {Mg" } 
converges to Jrfg = 0. Using the periodicity of the cosine function and a standard 
reduction formula from calculus , we obtain 

[ I  [ I  [ 1/2 p !  
lr g, = lr cos2 " ( p ! 1r x )  dx = 2 p ! Jr cos2 " ( p !?r x )  dx 

0 0 0 

= ! (7r/2 cos2 "(} d(} = ( 2n ) ! o . 7T }o 4" ( n !t 
There are other ways (more elementary ways) to prove that this sequence converges 
to 0, but it is more difficult than it appears at first glance . 

Theorem 3 covers almost all of the situations that might occur in applications, but 
the convergence of {j:,} to f can be much more complicated than the examples that 
have been presented thus far. In fact, it is possible for a sequence of continuous 
functions to converge pointwise to a continuous function but not converge uniformly 
to that function on any subinterval . For instance, for each positive integer n ,  let 

II 1 s" ( x )  = L kT v'2e n sin 2 ( 7T k ! x )  exp ( - n 2 sin 4 ( 7T k ! x ) )  . 
k = l  

Then the sequence { s 11 } converges pointwise on [0 , 1 ]  to the zero function but the 
convergence is not uniform in any subinterval of [0 , l] . This example is due to Osgood 
[5] and the reader can refer to the original paper for the fairly complicated details . It 
is enlightening to use a computer algebra system to graph several of the functions S 11 • 

To prove a convergence theorem that includes sequences whose convergence is far 
from uniform requires a new approach. The first difficulty lies in the fact that in the 
absence of uniform convergence , the limit function may not be Riemann integrable 
(see the sequence { c/>11 } presented earlier) . Consequently, the Riemann integrability of 
the limit function must become pmt of the hypothesis. Other than the fact that the 
statement of the theorem is then less aesthetically pleasing, this is no great loss as 
there are easy ways to check that a function is Riemann integrable (for instance, show 
that it is bounded and has only a finite number of discontinuities). We are thus led to 
the following convergence theorem which is usually called the Bounded Convergence 
Theorem since all of the functions have a common bound. 

BOUNDED CONVERGENCE THEOREM.  If {j,, } is a uniformly bounded sequence of 
Riemann integrable functions that converges pointwise on [a ,  b ]  to a Riemann inte
grable function f, thenfabf = lim " _, "Jab.f., . 

Assuming the hypotheses of the Bounded Convergence Theorem, the sequence 
{ If,, -f l }  is a uniformly bounded sequence of nonnegative Riemann integrable func
tions that converges pointwise on [ a ,  b ]  to the zero function. If the theorem can be 
proved for this special case, then the inequality 
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indicates that the general result is valid as well . Consequently, it is only necessary to 
prove this special case of the Bounded Convergence Theorem. The first published 
proofs of this theorem were given by Arzela in 1885 and independently by Osgood [6] 
in 1897. (For a good summary of the history of the proof of this theorem, see [4] . )  The 
first step in these early proofs is to note that the Bounded Convergence Theorem is 
actually equivalent to a result about sets of points and the concept of a figure plays an 
important role in this equivalence . A figure is a finite union of non-overlapping 
intervals and the length of a figure is the sum of the lengths of the intervals in the 
figure . Given a figure V, let l(V ) denote its length. 

THEOREM 4. The following are equivalent: 
1. If {f,} is a unifonnly bounded sequence of nonnegative Riemann integrable 

Junctions that converges pointwise on [a ,  b ]  to the zero Junction ,  then the 
sequence { Jab!,, } converges to 0 . 

2 . If {V) is a sequence of figures in [a , b] such that l(V,) > 8 > 0 for all n ,  then 
there exists a point z in [ a ,  b ]  that belongs to infinitely many of the figures V, . 

Proof Suppose that (1) holds and let {V,, } be a sequence of figures in [ a ,  b ]  such 
that l(V) > 8 for all n. For each n ,  let j, be the characteristic function of the figure 
V, . (That is, let fn( x )  = 1 i f  x E V, and f,,( x )  = 0 i f  x $. V,, . ) Each f,, i s  Riemann 
integrable on [ a ,  b] since it is a step function and the sequence {!,, } is clearly 
uniformly bounded on [ a ,  b ] .  Suppose there is no point z in [ a ,  b ]  that belongs to 
infinitely many of the figures V,, . Then the sequence {!,, } conver�es pointwise on 
[ a ,  b] to the zero function and (1) implies that the sequence U!'f,, } converges to 0. 
This contradicts the fact that fabf, = l(V,) > 8 for each n .  Therefore, there exists a 
point z in [ a ,  b ]  that belongs to infinitely many of the figures V, . 

Now suppose that (2) holds and let {!,, } be a uniformly bounded sequence of 
nonnegative Riemann integrable functions that converges pointwise on [ a ,  b ]  to the 
zero function. Suppose that the sequence { !)'!,, }  does not converge to 0. (This 
includes the possibility that the sequence does not converge .) By considering a 
subse�uence if necessary, we may assume that there exists a positive number YJ such 
that !t,'j, > 2YJ(b - a) for all indices n. Now fix n and choose a partition a =  c0 < c1 
< · · ·  < cq - l  < cq = b of [a ,  b ]  such that 

q E m(f, , ]; ) l  ( ]; ) > 2YJ( b - a) , 

where ]; = [ c i - l , c i ] for 1 5: i 5: q and m(j, , ]; ) = inf{f,, ( x )  : x E JJ (This represents 
a set of inscribed rectangles that is close to the "area" under the curve .) Let 
S0 = {i : m(f,, ]; ) < YJ} and S1 = {i : m(f,, ]; ) :2: YJ} and define a figure by V,, = 
U ; E s 1 ]; • Note that j, ( x )  :2: YJ for all x E V,, . Let M be a uniform bound for the 
sequence {!,,} and compute 

q 
2YJ( b - a) < L. m(f,, , ]; ) l ( ]; ) 

= L m(f,, ]; ) l ( ]; ) + E m(f,, ]; ) l ( ]; ) 

5: YJ ( b - a) + M l ( V,, ) .  
It follows that l(V, ) > 8 where 8 = YJ(b - a)jM. Since n was an arbitrary positive 
integer, this process generates a sequence {V,, } of figures in [ a ,  b ]  such that l(V,, ) > 8 
for all n .  Since (2) holds , there exists a point z in [ a ,  b ]  that belongs to infinitely many 
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of the figures V, . This implies that j,( z ) ;::.: TJ for infinitely many n ,  a contradiction to 
the fact that {j,,( z )} converges to 0. We conclude that the sequence { Jab!,, }  converges 
to 0. 

Thus to prove the Bounded Convergence Theorem, a proof of (2) is needed and it 
is at this point that the proofs of Arzela and Osgood become difficult and tedious .  
However, an elementary proof of  (2) has been given by Lewin [3] . Although his proof 
involves only elementary ideas ,  a fair number of "obvious but tedious to prove" facts 
about figures are required. Other methods for proving the Bounded Convergence 
Theorem have also been discovered; the interested reader should consult [4]. 

We conclude this paper with two remarks, one applied and one theoretical . In some 
applications, the key mathematical step is to express a function as a trigonometric 
series .  For example, suppose that f is an odd function on the interval [ - 7T ,  7T ]  and a 
sequence {bk}  is required so that the equation j( x )  = I:k= l bk sin(kx ) is valid for all x 
in the interval ( - 7T ,  7T ). The standard procedure to find the coefficient bP is to 
multiply both sides of the equation by sin( px ) then integrate over the interval 
[ - 7T , 7T ]: 

J:j( x ) sin( px ) dx = j_"",.. L�1 bk sin( kx ) sin( px ) ) dx 

= £: J"" bk sin( kx ) sin( px ) dx 
k = l _ ,.. 

= 7T bp . 

The second equality, the interchange of the integral and the infinite sum, is the crucial 
step and it is at this point that a convergence theorem is required. Since trigonometric 
series do not necessarily converge uniformly, a more advanced convergence theorem 
is required. The reader can consult [1 ]  for an application of the bounded convergence 
theorem that does not involve trigonometric series .  

The Bounded Convergence Theorem for the Riemann integral gets very little 
attention these days because the Riemann integral is no longer the integral of choice 
in the theory of integration. It has been replaced by the Lebesgue integral since this 
integral overcomes a number of the deficiencies of the Riemann integral . For 
instance, the limit of a uniformly bounded sequence of Lebesgue integrable functions 
is necessarily Lebesgue integrable . The Bounded Convergence Theorem for the 
Lebesgue integral is quite easy to prove and the corresponding result for the Riemann 
integral follows as a corollary. However, a fair amount of mathematical sophistication 
is required to understand the definition of the Lebesgue integral. The first step in the 
definition is the development of a theory of measure for sets of real numbers and 
statement (2) in Theorem 4 is a simple consequence of the properties of Lebesgue 
measure . Nevertheless ,  a discussion of the Bounded Convergence Theorem for the 
Riemann integral can enrich an undergraduate course in real analysis . The students 
will get to see a useful convergence theorem, recognize some of the deficiencies of the 
Riemann integral, and spend some time thinking about sets of points . The equivalence 
stated in Theorem 4 indicates the strong relationship between integration and 
properties of sets of points . All of these ideas will help pave the way for a graduate 
course in analysis . In addition, working through the details of the proof would make a 
good project for an undergraduate who is interested in real analysis . 
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Matr i ces, Co nt i n ued F ract i o n s, and Some 
Ear l y H i story of  I terat ion  Theory 

M I C H A E L  S O R M A N I  
Col lege of Staten I s l and, C U N Y  

Staten I s l and, NY 1 03 1 4-6600 

Introduction In a 1995 paper in this MAGAZINE, Marafino and McDevitt [ 14] 
discuss a variety of techniques at the advanced undergraduate level for studying the 
convergence of the continued fraction 

1 
( 1) c 

1 + ------,c,.----
1 + --:--

1 +  

The authors show how ideas from analysis, algebra, number theory, topology, and 
complex variables can all be used to determine those complex numbers c for which 
the above continued fraction converges . They prove that (1) converges for all complex 
numbers c except those on the real line to the left of - t .  In this note , we examine 
how still another area of undergraduate mathematics-linear algebra-can also be 
employed to prove this result. 

The linear algebra approach to this problem has an interesting history dating back 
to the very first paper [8] on matrix theory, published by Arthur Cayley in 1858. Other 
historical connections reach backward in time to the early work of Charles Babbage, 
the designer of the first large scale mechanical computer; and forward in time to the 
modern theory of dynamical systems. The problem is thus a link in a chain of ideas 
extending over almost 200 years . Some details of this history appear at the end of this 
note . 

Mobius transfonnations and associated matrices Following the lead of [ 14], we 
consider the Mobius (or linear fractional) transformation 

1 
fc ( z ) = cz + 1 ; 
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the convergence properties of  the infinite continued fraction ( 1 )  can be  found by 
studying the sequence of iterates fc(O), f(fe(O)) = fc2 (0), fc(je(JJO))) = fc3(0), . . . . It 
is a straightfmward exercise to show that the set of transformations of the form, 
f( ;:; )  = :�: � , where ad - be =!= 0, forms a group under composition. (All coefficients 
are complex numbers .) If j( z )  = '�� + bl and g ( z )  = c�� + DB ,  then the composite c�. + r  , _. + function can be written as 

( aA + bC ) ;:; + ( aB + bD) 
f( g ( z ) )  = 

( cA + dC ) z + ( cB + dD) 
(2) 

The coefficients in (2) suggest that we associate the matrix M = ( : � ) with the 
Mobius transformation j( z )  = a:::. + b1 • Note that, if cz + d =!= 0, we can write c.:: + ( 

a b z az + b  --( ) ( ) ( ) ( az + H l 
c d 1 = 

cz + d 
= ( cz + d ) cz ; d . 

Since the composition of Mobius transformations can be accomplished by multiplying 
their corresponding matrices, we can calculate the iterates of f( z )  by finding powers 
of its associated matrix M, as follows : 

( a b ) n ( z ) = k  (f" ( z ) ) , 
c d 1 11 1 

where k 11 is a normalizing factor that depends on ;:; ,  Again, we assume that we have 
not encountered a singular point of j( ;:; ) while doing the iterations. 

Application of linear algebra We are now ready to apply some elementary theory 
from linear algebra to solve our original problem. Consider the matlix Me = ( � � ) , 
corresponding to the transformation f( z )  = cz � 1 . If c =!= 0, then 0 is not an eigen
value of Me and ( <� ) is not an eigenvector. Hence we can find the eigenvectors and 
eigenvalues of Me by examining 

We see immediately that v = ( � )  is an eigenvector of Me if and only if z = fJ z ) ;  that 
is, z is a fixed point of the mapping fc( z ) . For such a value of z ,  the corresponding 
eigenvalue is A = cz + 1 .  

l . l . ld 
- 1 + � d 

1 + � £ ll l l So vmg z = c:::. + 1 )'le s z = 
-

2 c an A = - 2 . It o ows t 1at t 1e two 
eigenvalues of Me , A1 and A2 , are of equal magnitude if and only if VI + 4c has zero 
real part, i . e . ,  if and only if c is real and 1 + 4 c  .:::; 0. There are three cases to consider: 

Case 1: Eigenvalues of unequal magnitude. If 1 + 4c is either a positive real 
number or a complex number with nonzero real part, then the two eigenvalues of Me 
differ in magnitude . Suppose that I A1 I > I A2 1 and that the associated eigenvectors are 
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v1 and v2 . Following the standard power method, we apply powers of Me to 
tva = ( � ) . Since tva = c1v1 + c2v2 for some constants c1 and c2 , we get M;' tva = 

k " (t:·�o) ) = A�(c1v1 + ( �� )"c2v2 ) . Since I A2 1 < I  A1 1 in this case, it follows that ( :\' ) 
M;' tv0 converges to c1v1 .  This, in turn, implies that the iterates f;' (O) converge to the 
fixed point of fc( z )  that maximizes I A I = l cz + 1 1 , the magnitude of the eigenvalue .  

Case 2: Equal eigenvalues. If 1 + 4c = 0, then A1 = A2 = �. There is only one 
independent eigenvector in this case, namely v1 = ( n .  We note that the vector v2 
= ( �2 ) obeys ( Me - il )v2}V," = v1 , which implies that 

Since the vector iVa = ( � ) can be wlitten as a linear combination of v1 and v2 , it 
follows in this case also that the iterates fc" (O) converge to the fixed point of fc( z ), 
which is z = 2 .  

Case 3: Unequal eigenvalues of equal magnitude. If c i s  a real number obeying 
1 + 4c < 0, then we have distinct complex eigenvalues that are complex conjugates of 
each other. Rewriting the eigenvalues in polar form, we have A1 = re ; "' and A2 = re - ; "' .  
The vector tva i s  a linear combination of  both eigenvectors ; i . e . ,  tv0 = c1v1 + c2v2 for 
some nonzero constants c1 and c2 . From 

M " w = k (f;' ( O) ) = r " ( e ; " "'c v + e - ; " "'c v ) c 0 " 1 l l  2 2 , 

we can see that the iterates f;' (O) remain bounded but do not converge . It should also 
be noted that if e ; "' is a k th root of unity, then we will get peliodic behavior for the 
iterates, where f;• +k (O) = f;' (O) .  

This completes the proof that the complex continued fraction (1) converges for all 
complex numbers c except for those real c for which 1 + 4c < 0 .  

Historical notes The long history of this problem involves the inventor Charles 
Babbage (1792-1871); the astronomer John Herschel (1792-1871) ; the logician 
George Boole (1815-1864) ; and the mathematician Arthur Cayley (1821-1895), who 
wrote extensively about matrices and first defined abstract groups . 

In 1813, Babbage and Herschel, then mathematics students at Cambridge, edited 
the first and only issue of the Memoirs of the Analytical Society [4]. This journal 
contained three anonymous articles (written by the editors) , including one on iteration 
of Mobius transformations . Although Herschel has been credited [ 1 1] with the 
authorship of this article, Babbage was also interested in the subject, and published 
two papers on functional equations soon afterwards [2], [3]. These papers deal with 
questions such as finding functions f for which the nth iterate of f (i . e . ,  the 
composite function f" formed by composing f with itself n - 1 times) equals itself. 
Boole , in his 1844 book [7] on finite differences, refers repeatedly to Babbage's 
contributions to the "calculus of functions" (see e .g . ,  [7, p.  291) and makes specific 
reference to his work on iterates of functions. Boole [7, p. 298] also examines the 
specific problem of determining which Mobius functions obey f" = f. By the 1830's, 
Babbage had abandoned his study of pure mathematics and was deeply involved with 
his pioneering work on computer design. 
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In 1858 Arthur Cayley wrote the first paper [8] on the themy of matrices .  This very 
readable work contains much of today's standard material in undergraduate linear 
algebra courses. Among its other items of interest is a formula for the nth power of 
the matrix ( � � ) . After developing this formula, Cayley remarks that the " . . .  preced
ing investigations are intimately connected with the investigations of Babbage and 
others in relation to the function cf>x = ax + hi . "  In 1880, Cayley returned specifically �'X + c 

to this topic in a paper entitled "On the matrix ( � � ) , and in connection therewith 
the function �;: � "  [8] .  Again, he mentions the early work of Babbage and refers both 
to the 1813 paper [4] and to Boole's book. 

Cayley's work on iteration theory and the questions he raised, particularly those 
relating to Newton's method, are usually regarded (see, e .g. , [1] ,  [ 15]) as among the 
primary factors leading to the development by Fatou and Julia of the theory of 
dynamical systems in the early 20th century. Thus it appears that the study of 
functional iterations , which has recently become so popular as a result of beautiful 
computer graphics, can be traced back through Cayley and Boole to Babbage, who 
designed the first large computer. 

Several good references ([5], [6], [ 12], [ 13]) deal specifically with Mobius transfor
mations . Hans Schwerdtfeger's excellent book [ 16] contains most of the material used 
above, and much more. Further historical references include [I] ,  [10], [ 1 1] ,  and [15] .  

Acknowledgment. TI1e author i s  grateful to  the referees for their suggestions .  
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F rom 3 0  to 60 I s  N ot Tw i ce as H a rd 

M I C H A E L  D A L E Z M A N 
Yesh iva U n i vers i ty 

N ew York, NY 1 00 1 6 

Euclid's proof that there are infinitely many primes [3, p .  25] can be modified to yield 
a proof of a simple inequality: If p 1 , p 2 , . . .  is the sequence of prime numbers and 
n � 2 then p 1 p 2 , . . .  p, > p, + 1 . In 1907, Bonse [1 ]  gave an elementary proof of a 
stronger inequality, now called Bonse's Inequality [4]: If n � 4 then p 1 p 2 . . .  , pn > 
p; + 1 . Bonse then used his inequality to prove that 30 is the largest integer m with the 
following property: 

If 1 < k < m and ( k ,  m) = 1 ,  then k is a prime . 
In this note we give an elementary proof of a stronger inequality and use it to prove 

that 60 is the largest integer m with the following property: 
If l < k  < m  and ( k ,  m) = 1 ,  then k is a prime power . 

We then indicate how the inequality can be strengthened and how the result can be 
generalized. 

The following notations will be used: 
w(k ): the number of distinct prime divisors of k ; 
f!(k): the number of prime divisors of k ,  counting multiplicity; 

l x J : the largest integer not greater than x ; 
17"( x ): the number of primes not exceeding x ;  
cf>(k ): the number of positive integers prime to k and not exceeding k . 

THEOREM 1 . If n � 4, then P 1 P2 · · ·  p, > Pn + 1 Pn + 2 · 
This inequality follows readily from Bertrand's postulate [3, p. 367] but we give 

here a proof that is self-contained. 
Proof The result can easily be verified for n < 10. Let i = f % l , and suppose 

P 1 P2 . . .  p, � Pn + 1 Pn + z < p,�+ 2 · 
Then 

( P 1 P 2 · · ·  P i ) 2 < P 1 Pz · · ·  Pn < P;+ z and P 1 Pz · · · P i < Pn + 2 · 

Let us consider the Pi integers N1 = tp 1 p2 • • •  Pi - 1 - 1 ,  t = 1 ,  2, . . .  , Pi · For all t ,  
N1 < p 1 p2 · · · Pi < Pn + 2 and i s  prime to p 1 , p 2 , . . .  , p i _ 1 . Thus i f  q1 i s  the smallest 
prime dividing Nt > then Pi � q1 < p, + 2 • The q/s are distinct, for if q1 = q1, ,  with 
t =I= t ' ,  then q1 I N1 - Nt' = (t - t ' )  p 1 p 2 · · ·  pi _ 1 , so q1 l t - t' ; this is impossible since 
1 � t, t ' � Pi · Hence the number of N/s must be no greater than the number of 
primes q such that Pi � q < p, + 2 . Therefore Pi � n + 2 - i .  But i =  l%J, so n � 2 i 
+ 1 and pi � i + 3. The last inequality clearly fails for i �  5, so it fails for n � 10. • 

DEFINITION .  An integer m satisfies property 9'5 if 
for all k such that 1 < k < m and ( k ,  m) = 1 ,  w ( k )  � s .  
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LEMMA. If m satisfies 9\ and Pn Pn + 1 ::-:;; m, then p 1 p2 . . .  Pn ::-:;; m . 

Proof Let m satisfY 9\ . Consider all the primes p 1 , p 2 , . . .  , Pn + 1 .  If two of these 
primes, say p, and p!L were both relatively prime to m , we would get p, p!L ::-:;; m and 
( p, p!L , m) = 1 contradicting the fact that m satisfies 9'\. Hence at most one of the 
primes p 1 , p 2 , . . .  , Pn + 1 does not divide m, and the lemma follows . • 

MAIN THEOREM.  60 is the largest integer satisfying 9\ . 

Proof It is easy to verify that 60 satisfies 9\ . We need to prove that 60 is the 
largest such integer. Let m > 60 satisfy 9'\ . If m ;:::: 77 = 7 · 1 1  = p4 p5 ,  we let n be 
the largest integer such that p 1 p2 . . .  Pn ::-:;; m. By the lemma, n ;:::: 4; by Theorem 1 ,  
P 1 P2 . . .  Pn > Pn + 1 Pn + 2 . Hence, Pn + 1 Pn + 2 < m and, by the lemma, P 1 Pz  . . .  Pn + 1 ::-:;; 
'IJ'j,; this contradicts the maximality of n .  Thus we must have 60 < m < 77. Clearly 
5 · 7 < m. By the argument in the proof of the lemma, m must be divisible by all of the 
primes 2, 3, 5, and 7 with at most one exception . Therefore, m is divisible by 105, by 
70, by 42, or 30; the only possibility is 70 . But 70 does not satisfY 9'1 because 33 is 
less than 70 and prime to 70, but not a prime power. Hence 60 is the largest integer 
satisfying 9' 1 . • 

It is noteworthy that the Main Theorem implies Theorem 1 .  To see why, let n ;:::: 4 
and let a =  p 1 p 2 . . .  Pn · Since a ;:::: 210, a does not satisfy 9'1 , so there exists an integer 
b such that 1 ::-:;; b < a , (b ,  a) = 1 and w(b) ;:::: 2. If p and q are 2 distinct primes that 
divide b, then Pn + 1 Pn + 2 ::-:;; pq ::-:;; b < a =  P 1 P2 . . .  Pn · 

Generalizations Bonse went further and proved that if n ;:::: 5, then p 1 p 2 • • •  Pn > 
p � + 1 . He used this result to show that 1260 is the largest integer with the property: 

If 1 ::-:;; k < m and ( k ,  m) = 1 ,  then fl ( k ) ::-:;; 2 .  

Bonse also indicated that similar methods could b e  used to prove p 1 p 2 . . .  P n  > r:+ l 
for sufficiently large n .  Using this inequality, he wrote , he had found that 30,030 was 
the largest integer with the property: 

If l ::-:;; k < m and ( k ,  m) = 1 then fl ( k ) ::-:;; 3 .  

(Actually, Bonse erred; the correct number i s  60,060 . ) 
Landau [2 ] generalized Bouse's results , proving that for every integer s ;:::: 1 there 

exists an integer n8 such that 

n > n :=:) p p . . .  p > p s + 1 . 
- s l 2 n n + l ' 

he concluded that there exists a largest integer m, with the property: 

If 1 ::-:;; k < ms and ( k , m , ) = 1 , then fl ( k ) :o:;; s .  

Our results too ,  can be extended and generalized. 
THEOREM 2 . For every integer s ;:::: 1 , there exists an integer n8  such that 

n ;:::: ns :=:) P 1 P2 . . .  Pn > Pn + 1 Pn + 2 . . .  Pn +s + 1 · 

To prove this, we replace i = l i- J by i = l 8 � 1 J in the proof of Theorem 1 ; we get 

p; ::-:;; si + 2s + 1 .  
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The reverse to  this inequality will be  a consequence of  the following 3 lemmas : 
X LEMMA 1 .  For all integers a �  2 and for all x > 0 7T ( x ) � - cp(a) + (a - 1). a 

1 5 3 

This follows from the fact that the interval from ka to (k  + 1)a (for k =  1, 2, . . . l � J) ({ 
contains at most cf>(a) primes . 

a a2 
LEMMA 2. For all i � 1 Pi > i cf>( a) - cf>(  a) . 

This is obtained as follows : For any x > 0, we let i = 7T ( x ) + 1 ,  then x < Pi · We 
then substitute i - 1 for 7T ( x ) and pi for x in Lemma 1 . 

- a LEMMA 3. !�� cp( a) = + oo .  

This follows from the fact that 
p - n 1 n ----=-r - --1 P < r  P p < x 1 - -- ·  - p 

Theorem 2 can be used to prove that, for eve1y s ,  there exists a largest integer m , 
satisfying .9, . As in the case s = 1, we have the following result: 

LEMMA 4. If m satisfies .9, and p11 p11 + 1 . . .  p 11 + s � m , then p 1 p2 • • •  p" � m. 

To prove the existence of 111 , , let m be an integer satisfying .9, , and let us assume 
that, for some l � n , , we have 

P 1 P 2 · · ·  Pl + 1 > m � P 1 P2 · · ·  P1 > Pl + 1 P l + 2 · · ·  Pl + s + 1 · 

By Lemma 4, this implies p 1 p 2 • • •  p 1 + 1 � m; this contradiction proves that m. < p 1  p 2 
· · ·  p" • and thus establishes the existence of m , .  

Bounds for m .  We will now show that 

P 1 P 2 · · ·  Pn , - 1 � ms < Pn , Pn , + 1 · · ·  Pn , + s · 

Proof We saw that 1n , < p 1 p 2 • • •  p11 •  If p" Pll . + l · · ·  p11 + s � 111 8  then Lemma 4 
gives p 1 p2 • . .  Pn , � m , . On the other l;and, by d�finition �f n ,  we have p 1 p 2 • • •  
Pn , - 1 < P" , Pn + 1 • • • Pn , + s . This shows that p 1 p 2 · · · Pn , - 1 satisfies .9, and gives the 
lower bound for m, .  • 

The reader is invited to verifY that n2 = 6, n3 = 7, n4 = 9, m2 = 2730, m3 = 210,210 
and m4 = 29,099,070. 
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E u l er' s Form u l a  for (( 2 k ) ,  Proved by 
I nd u ct ion  o n  k 
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Euler showed in 1735 for any positive integer k that 

( 1) 

where the Bernoulli numbers Bm (m = 0, 1 ,  2 , . . .  ) are given by the recurrence 
relation 

m ( m + 1 ) '[ . B1 = 0 , m =  1 , 2 , 3 ,  . . . , 
j � O  J 

(2) 

with B0 = l .  Many proofs of (l)  are known; see ,  e .g. , [1 ]-[6]. The purpose of this note 
is to give a simple proof of (1) using induction on k .  

We start with the well-known Fourier expansion 

Taking t = 0 in (3) we obtain (1) in the case k = l. Now suppose that 

holds for 1 :::;; i < k .  From (3) we obtain 

1Xlt2k- l ' " 1 t21 t l (� t 2 - 7T t + 7T
2 ) dtdt " '  dt 

0 0 0 0 4 2 6 1 2 k - l 

(3) 

lxjt2k- l Jt2Jt 1 ;., cos nt d d d = . . .  '-' --2- t t l . . .  t2k - l , 
o o o o n � l  n 

where 0 :::;; t ; :::;; 27T for i = 1 ,  2, . . .  , 2 k - 1 and 0 :::;; x :::;; 27T . Carrying out the integra
tion we obtain 

X 2 k + 2 7TX 2 k + l 7T 2 X 2k 
2(2k + 2) ! - 2(2k + 1) ! + 6(2 k ) !  

oo k + l  ( ) i y (2 ' ) = ( _ 1) k + 2 '[ cos nx + '[ - 1  " t x 2 k + 2 - 2 ; ( 4) 
n � l n2k + 2 i � 2 ( 2 k + 2 - 2 i ) ! . 
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Putting x = 27T in  (4) we obtain 
( - 1) k + 1 k 0 k - 1  ( - 1) k - i -

. 
( (2 k ) = ( 2 k + 2) ! ( 27Ttk -

iE ( 2 k + 2 - 2 i ) ! 2 (27T ) 2k 2 · � (2 i ) . 

Appealing to the inductive hypothesis we deduce that 
( ) k + l k k - 1  

( ( 2 k )  = (
-
2 k

1
+ 2) ! (27T)z k - ( - 1) k + l ( 27T)z k  ,·L= 1 

--;-:-;----::-B--=2-:--; �:-;:-;
( 2 k  + 2 - 2 i )  ! ( 2 i ) ! ' 

which can be rewritten as 
( - 1) k +\27T ) 2k 1 ( k - 1 ( 2k + 2 ) ) 

((2 k ) = 2(2 k ) ! ( k + 1 ) ( 2 k + 1) k -
iE 2 i  B2 i . 

1 5 5 

( 5) 

As B1 = - 1/2 and B2j + l = 0 for j � 1 , replacing m by 2k  + 1 in (2), we obtain 

B2k = ( k + 1)�2k + 1) 
( k - �E ( 2 k

2; 2 ) B2l ( 6) 

The inductive step now follows from equations (5) and (6). 
Acknowledgment. This work is supported by the "333 Project" of Jiangsu Province, China. The authors 
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From Mathematical World News , a column in National Mathematics Mag
azine (predecessor of Mathematics Magazine) , April 1937: 

Mathematische Annalen, the well-known German journal , was 
founded in 1 868 by Alfred Clebsch and Carl Neumann. It is 
now edited by David Hilbert . . . and is published by the firm of 
Julius Springer in Berlin . 

The Japanese have entered the field of manufacturing slide rules.  
The Hemmi slide rules , made of bamboo and of laminated con
struction, are in common use in the United States . 

Dr. David Hilbert , professor of mathematics emeritus at the 
University of Gottingen, celebrated his 75th birthday on Jan
uary 23, 1937. 
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Proposa l s  

To be considered for publication, solutions 
should be received by September 1, 2000. 

1 594. Proposed by Kent Holing , Statoil Research Centre, Trondheim, Norway.  

In quadrilateral ABCD, AB + AD = BC + CD and L A  is  a right angle . Square 
APQR has P ,  Q, and R on segments AB , BD, and AD, respectively, with AP = BC .  

(a) Find the number of  such quadrilaterals (up to  congruence) given the lengths 
BC and BD. 

(b) Show how to construct all such triangles in terms of well-known straight-edge
and-compass constructions given the lengths BC and BD. 

1 595. Proposed by Wu Wei Chao , Guang Zhou Normal University, Guang Zhou 
City , Guang Dong Province, China . 

Find all pairs of positive integers a and b such that ab + a + b divides a2 + b2 + 1 .  

1 596. Proposed by Murray S .  Klam1dn , University of Alberta , Edmonton , Alberta, 
Canada . 

From the ve1tices A0 , A1 , . . .  , A "  of a simplex S, parallel lines are drawn intersect
ing the hype1planes containing the opposite faces in the corresponding points 
B0 , B1 , . . .  , B11 • Determine the ratio of the volume of the simplex determined by 
B0 , B 1 , . . .  , B" to the volume of S .  

We invite readers to submit problems believed t o  be  new and  appealing t o  students and  teachers of 
advanced undergraduate mathenwtics. Propo.mls nutst, in general, be accompanied by solutions and by any 
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet containing the solver's name and full address. 

Solutions and neu; proposals should be mailed to Elgin Johmton, Problems Editor, Department of 
Mathematics, Iowa State University, Ames, IA 5001 1 ,  or mailed electronically (ideally as a LATEX file) to 
j ohns ton@math . iastate . edu . Readers tclw use e-mail should also provide an e-mail address. 
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1 597. Proposed by Constantin P. Niculescu , University of Craiova, Craiova, Roma
nia . 

For every x ,  y E (0, {rr/2 )  with x =I= y ,  prove that 

ln2 1 + s�n xy 1 1 + sin x 2 1 1 + shHJ 2 
1 < n  o · n  ' o · - sm xy 1 - sin x "  1 - sin y '" 

1 598. Proposed by Hoe-Teck Wee, student , Massachusetts Institute of Technology , 
Cambridge, Massachusetts . 

Starting with any n-tuple R0 ,  n > 1 ,  of symbols from A ,  B ,  C ,  we define a 
sequence R0 ,  R1 , R2 , . . .  according to the following relation: if R1 = ( x 1 , x 2 , . . .  , x ,), 
then RJ + l = ( y 1 , y 2 , . . .  , Yn ), where yi = x i  if x i = x i + l (taking x n + l = x 1 ) and Yi is 
the symbol other than x i and x i + l if x i =I= x i + I · (For example, i f  R0 = ( A , A, B ,  C ), 
then R1 = ( A , C , A ,  B ). )  

(a) Find all positive integers n > 1 for which there exists some integer m > 0 such 
that R 111 = R0  for all R0 .  

(b) For n = 3k , k � 1 ,  find the smallest integer m > 0 such that R 111 = R0  for every 
Ro · 

Q u i ck ies 

Answers to the Quickies are on page 1 62 

Q899. Proposed by Costas Efthimiou , Newman Laboratory of Nuclear Studies , 
Cornell University, Ithaca, New York , and Florida Southern College , Lakeland, 
Florida . 

Define the sequence (a" )" ;;, 0 by a0 = 0, - 1 < a1 < 1 ,  and the recursion 
an + l + all 

Express a" in terms of a1 . 

a " + o = 1 + . � a" a" + l 

Q900. Proposed by Mircea Radu , Bielefeld University, Bielefeld, Germany , and 
Institute for Educational Sciences , Bucharest , Romania. 

A given angle measures a degrees. Distinct points P0 , P1 , . . .  , P" are located on the 
open rays comprising the angle so that Pk and Pk + 1 are on different rays and 

Pa Pl = Pl P2 = . . .  = P" _ l P" . 

Find the maximum possible n in terms of a .  

So l ut ions  

Triangle with Vertices o n  Three Concentric  Circles April 1 999 

1 5 69. Proposed by Ismor Fischer, Department of Biostatistics , University of Wiscon
sin , Madison , Wisconsin. 



1 5 8 © MAT H E M A T I C A L  A S S O C I AT I O N  O F  A M E R I C A 

Given three concentric circles in the plane, prove that (up to rotation and 
reflection) there exists a unique triangle of maximum area having exactly one vertex on 
each circle , respectively. 
Solution by Michael Woltermann, Washington and Jefferson College, Washington ,  
Pennsylvania . 

Let L:::,ABC have its vertices A ,  B ,  and C on circles with center 0 and radii a, b ,  
and c ,  respectively. The triangle of  maximal area has orthocenter 0 lying on  or  in  the 
interior of L:::,ABC.  

If the orthocenter of L:::,ABC is not 0,  some altitude of L:::,ABC fails to  pass 
through 0, say the altitude from A. Let A' be on the circle of radius a in the half � � � � plane of BC �ntaining 2-.Jeither half plane if 0 is on BC) such that A'O j_ BC . 
Then d( A ' ,  BC) > d( A ,  BC), and the area of .t,A' BC is greater than the area of 
L:::,ABC .  Thus any triangle of maximal area must have orthocenter 0. Given A and B ,  
there are at most two choices for C such that AO j_ Bc. I f  the area o f  l::,ABC is 
maximal, then AO intersects BC.  We conclude that 0 is in the interior of or on 
.t,ABC.  

To show uniqueness up to  rotation and reflection, we introduce a rectangular 
coordinate system into the plane so that 0 is the origin. Without loss of generality 
assume that 0 < c < b < a , A is the point (a ,  0), and B is in the upper half plane . 
Then B and C have coordinates ( t ,  Vb 2 - t 2 ) and (t , - Vc 2 - t 2 ) for some t 
between - c and 0. The altitude from C to AB satisfies 

and 0 is on this altitude if and only if Vb2 - t 2 Vc2 - t 2 = t(t - a). Because y 
= Vb2 - t 2 Vc2 - t 2 is increasing from 0 to be and y = t(t - a) is decreasing from 
c(a + c) to 0 on [ - c, O], the intermediate value theorem guarantees the existence of a 
unique t in [ - c, 0] satisfying Vb2 - t 2 J c 2 - t 2 = t(t - a). Therefore, there is a 
unique such triangle with orthocenter 0. 

Also solved by  Sue Ackemwnn and Michael Neubauer and Joel Zeitlin , Arthur Berg and  Eugene Gut/cin ,  
Jean Bogaert ( Belgium), Daniele Donini ( Italy), Hans Kflppus ( Stuitzerland), Victor Y.  Kutsenok, Neela 
Laksh manan, Laurel and Hardy Problem Group , Stephen Noltie, Rob Pratt and Jesse Frey , Seth 
Zimmerman,  and the proposer. There was one incorrect solution .  

A Nonlinear First Order Differential Equation 

1 5 70. Proposed by Ice B .  Risteski , Skopje, Macedonia . 

Solve the differential equation 

( d ) n + l d __:_.Y + axty 2 n __:_.
Y + my 2 n + 1 = O dx dx ' 

April l999 

a i= O , n E N . 

I. Solution by Danny Arrigo , University of Central Arkansas , Conway , Arkansas , 
and Debra P. Otto , student, University of Toledo , Toledo , Ohio . 

The differential equation has solutions 

y = 0 , 
n ( n

_
+ l ) " + l 

y "
= - - --a nx and a 

y = 
aAx - ( - A)" + 1 
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For y =I= 0, the substitution y = 1/u and multiplication by u2 " + 2 gives the Clairaut 
equation 

( du ) n + l du - dx - ax dx + au =  0 .  

Differentiating with respect to x yields [ ( du ) " ] d2u 
( n + 1) - dx + ax 

dx 2 = 0 ,  

giving rise to two cases. Substituting 

into the Clairaut equation leads to 

du ( n + 1) u 
dx = nx 

which we substitute back into (l) to obtain 

( 1 ) 

The second case leads to u = Ax + B and substitution into the Clairaut equation 
implies 

( - A) n + l  
u = A1: - -'----''--a 

Reciprocating to get y yields the claimed solutions. 
II .  Solution by Charles K .  Cook , University of South Carolina at Sumter, Sumter, 
South Carolina . 

Let p = dyjdx . Then 

( l) 

or ax = - p " jy 2 " - ay jp . Differentiating with respect to y and simplifying yields 

( y� - 2 p ) C  np n + l - ay 2 n + l ) = 0 .  

I f  y dp / dy - 2 p = 0 ,  then p = Cy 2 . Substituting this into (1) yields 

which then yields either y = 0 or the general solution 
- a 

y
.
= 

C ( C "  + ax ) ·  

If 
np n + l - ay 2 n + l = 0 ,  ( 2) 
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then, substituting this for p " + 1 i n  (1) ,  we obtain y = 0 or  xp = ( - 1 - 1/n) y .  
Substituting this into (2), we find the singular solution(s) 

n ( n + 1 ) " + 1  
y "  = - - --a nx 

Also solved by Reza Akhlaghi ,  Jean Bogaert ( Belgium), Hans Kappus ( Switzerland), Philip Korman ,  
Jerold Letcandowski (student), James Magliano , and the proposer. There was one incomplete solution . 

Painting the Digital World April l999 

1 5 7 1 . Proposed by Michael H.  Brill , Sarnoff Corporation , Princeton ,  New Jersey . 

Let the "real world" be those convex three-dimensional solids whose surfaces are 
smooth. Let the "digital world" be a three-dimensional tiling of tiny identical cubes, 
which we call " voxels ,"  analogous to a two-dimensional digital image of square pixels . 
Each "digital-world" object X '  is a maximal subset of these voxels that lies inside the 
corresponding "real-world" object X. 

What is the maximal ratio of the amount of paint needed to cover X '  to the amount 
needed to cover X taken over all convex X whose boundary is a smooth surface and 
all possible X '  as the orientation and size of the voxels vary? In other words , the 
problem is to find the supremum of the ratio of the exposed surface area of X '  to that 
of X. 

Solution by Seth Zimmerman ,  Oakland, California . 
The supremum of the ratio is 13 .  
To see that the ratio, 13 ,  can be approached as closely as we wish, consider an 

octahedron with infinitesimally rounded edges . Assume that the edg_e lengths of the 
octahedron are one, so that the "real-world" area is 8 · ( 13 / 4) = 2v3 . Orient a tiling 
of tiny voxels so that its edges are parallel to the three interior diagonals of the 
octahedron. As the voxels' size decreases to zero, the "digital-world" area approaches 
twice the area of the projection of the octahedron onto the three coordinate planes 
parallel to the voxels faces . The limit of each projection is a unit square so the total 
digital area is 6. Thus , the limit of the ratio of the digital area to the real world area 
is /3 .  

We see next that 13 is the supremum of the ratio . Considered at the infinitesimal 
level, a smooth surface can be regarded as locally flat . Thus , we may consider planes 
passing through (1 ,  0, 0), (0, a, 0), and (0, 0, b) ,  a and b nonnegative and not both 
zero, and maximize the ratio of sum of the areas of the projections to the three 
coordinate planes to the area of the triangle. From inte ration or the vector cross 
product, we see that the area of the triangle is a2b 2 + a2 + b 2 /2 and the total area 
of its projection to the three coordinate lanes is (ab + a + b) /2. By the Cauchy
Schwarz inequality, (ab + a +  b)j a2b 2 + a2 + b 2 ::;; 13 with equality if and only if 
ab = a = b, implying a = b = 1 .  

We note that all eight faces o f  the octahedron were miented in  this way with 
respect to axes parallel to the edges of the voxels . 

Also solved by the proposer. 

Limit of a Homogeneous Fractional Recursion April l999 

1 5 72. Proposed by Western Ma-ryland College Problems Group , Westminster, Mary
land. 

Let b0 = 1 and b 1  satisfy 0 < b 1  < 1 .  For n � 1 ,  define b" + l by 

b -
2bli bli _ l - b,; 11 + 1 - 3bll - l - 2bli 

. 

Show that (b)" ;;,. 0 converges ,  and compute its limit in terms of b 1 .  
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Solution by Yan-Loi Wong , The National University of Singapore,  Singapore, Repub
lic of Singapore . 

We show that lim , _, 00h11 = 0. 
Let a1 = 1 - b1 . First one can prove using induction and the given recursive 

relation for b, that for n � 1 ,  

b ,  b 1  + (2 n - 2) a1 
b, _ 1 = 

b 1  + (2 n - 1) a1 · 

It follows from this that, for n � 1 ,  

b 1  
b, = b + a  1 1 

b 1  + ( 2 n - 2) a1 
b 1 + (2n - 1) a1 · 

This shows that (b, ) is monotone decreasing and bounded below by 0. Hence, it 
converges .  Next we shall prove by induction that for n � 0, b, < 1/ fb 1  + 2 na1 . For 
n = 0, the inequality to be proved is b0 < 1/ jb;, which is true because 0 < b1 < l. 
Suppose that the above inequality is true for n � 0 . Then using the induction 
hypothesis , we have 

b 1  + 2 na1 1 
b, + 1 = b, . b 1  + (2 n  + 1 ) a1 

< fb 1  + 2 na1 b1 + ( 2 n  + 1) a1 · 

Direct simplification shows that (b 1  + 2 na1)(b 1  + (2 n + 2)a1)  < (b 1  + (2 n + 1)a1)2 . 
Hence, 

fb 1  + 2 na1 1 
bn + 1 < b 1  + (2 n  + 1) a1 

< fb 1  + ( 2n  + 2) a1 

Consequently, lim " __, oob, = 0 . 
Also solved by  Reza Akhlaghi , Tewodros Amdeberhan, Michel Bataille ( France), Brian D. Beasley , Jean 

Bogaert ( Belgium), Stan Byrd, David Callan, Jeremy Case, Centre College Problem Solving Group , Knut 
Dale ( Norway), Charles R. Diminnie, Daniele Donini ( Italy), Robe·rt L .  Doucette, Marty Get;; and Dixon 
Jones, N. H. Guersenzvaig ( Argentina), Jim Ha·rtman ,  E. ]. Janowski and G. Ladas, Hans Kappus 
( Switzerland), Kee-Wai Lau (China), Ctm A. Minh ( graduate student), Michael Reid, Stew Roberts, 
C. Ray Rosentrater, Volkhard Schindler ( Gernwny ), H einz-Jilrgen Seiffert (Germany), Achille as 
Sinefakopoulos ( stliflent, Greece), Michael Vowe ( Switzerland), Michael Woltermann, Paul ]. Zwier, and 
the proposers. There were two incorrect solutions and one incomplete solution. 

Concentric Points in a Triangle April l999 

1 5  73. Proposed by Jiro Fukuta, Professor Emeritus, Gifu University , Gifu-ken , 
Japan . 

Given b.ABC,  let AD be a cevian to the side BC,  and let E be on segment AD. 
The circumcircle of b.ACD intersects the line BE at points M and N, and the 
circumcircle of b.ABD intersects the line CE at points P and Q. Prove that the 
points M, N, P, and Q lie on a common circle and its center is on the line 
perpendicular to the side BC at the point D. 

Solution by Michael Reid, Brown University, Providence, Rhode Island. 

We have ME · EN = AE · ED, because the chords MN and AD intersect at E. 
Similarly, PE · EQ = AE · ED, so ME · EN = PE · EQ, from which it follows that M, N, 
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P ,  and Q are concyclic. Let 0 be  the center of  the circle through M, N, P ,  and Q,  
and let r be its radius . 

By considering the power of the point B with respect to the circle through M, N, 
P ,  and Q, we have B02 - r 2 = BM · BN. From the circumcircle of L::,.ADC , we also 
have BM · BN = BD · BC .  Similarly, C02 - r2 = CP · CQ = CD · CB . Subtract these 
two equations to get B02 - C02 = BD� BC - CD · CB = BD2 - CD2 , or 

( 1)  
The triangle inequality implies BO + CO �  BC = BD + CD, hence both sides of (1)  
are nonnegative. Let 0' be on the line perpendicular to BC at  D,  on the same side as 
0 and such that ( D0' )2 = B02 - BD2 . Then BO' = BO and, from (l), we have 
CO ' = CO. It follows that 0 '  = 0 and OD is perpendicular to BC as desired. 

Also solved by Michel Bataille ( France), Daniele Donini ( Italy), Marty Getz and Dixon Jones, Victor Y .  
Kutsenok, Neela Lakshmanan, Volkhard Schindler (Gernumy), Achilleas Sinefakopoulos ( student, Greece), 
Peter Y. Woo, Robert L. Young , and the proposer. 

An swers 

Solutions to the Quickies on page 1 57 

A899. Because - 1 < a1 < 1 ,  we can write a1 = tanh 0 1 .  Also a0 = tanh 00 , where 
00 = 0. Inductively, 

a, + 2 = 
tanh e, + tanh e, + l 

1 + t h (J t h (J = tanh( e, + e, + d . an , an n + l 

Therefore a, + 2 = tanh 0, + 2 with 0, + 2 = 0, + 0, + 1 •  
The solution to the recursion 0, + 2 = 0, + 0, + 1  has the form 

e, = b ( 1 +2
15 ) n + c ( 1 -2

15 ) ll 

Using the values 00 = 0 and 01 , we find that the solution in our case is 

so that 

(J 
= !.I._ [ ( 1 + /5 ) "

- ( 1 - /5 ) " ] 
ll 15 2 2 , 

A900. The maximum number of lines is [90 /a l . 
Let 0 denote the vertex of the angle. There is no loss of generality in assuming P 0 

is no further from 0 than is P, . Let f3 denote the measure of L OP1 P0 • Given 
P0 , . • .  , Pk , another point Pk + 1  may be added so long as L 0Pk _ 1 Pk is obtuse .  An easy 
induction yields L 0Pk _ 1 Pk = 180 - f3 - k a . Because f3 may be chosen arbitrarily 
small, it follows that the maximum value of n satisfies n a � 90 > ( n - 1) a , so equals 
[90/a l . 
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PAUL J .  CAMPBELL, editor 
Beloit College 

Assistant Editor: Eric S: Rosenthal, West Orange, NJ. Articles and books are selected for 

this section to call  attention to interesting mathematical exposition that occurs outside the 

mainstream of mathematics literature. Readers are invited to suggest items for review to 

the editors.  

Baron-Cohen, Simon, Sally Wheelwright, Valerie Stone, and Melissa Rutherford, A math
ematician, a physicist and a computer scientist with Asperger syndrome: Performance on 
folk psychology and folk physics tests, Neurocase 5 {6) { 1999) 475-483. Gibbs, W. Wayt, 
Profile: Monstrous moonshine is true, Scientific American (November 1998) 40-41 .  AS
PEN: Asperger Syndrome Education Network, http : www . AspenNJ . org/ . 

Does some of the description in the profile in Scientific American of Fields Medalist Richard 
Borcherds strike a chord? Borcherds was "unnerving [to talk to] ," had "palpable unease of 
his movements," indulged in "frequent far-off stares," was "dress[ed] entirely in wrinkled 
brown attire," and confessed "I 'm not very good at expressing feelings and things like that." 

nerd n. Slang. 1 .  A person regarded as stupid, inept, or unattractive. 2 .  A person 
who is single-minded or accomplished in scientific pursuits but is felt to be socially 
inept.-American Heritage Dictionary , 3rd ed. 

Are you a nerd? Are some of your colleagues or students? Like Borcherds, the mathemati
cian of the Neurocase article, some may have A sperger syndrome {AS) ,  a relatively new 
category of developmental disorder, the mildest and highest functioning end of the autism 
spectrum. Clinical features include paucity of empathy, inappropriate social interaction, 
pedantic and monotonic speech, poor nonverbal communication, intense absorption in one 
particular topic, and clumsy movements and odd posture. Males are more likely to be af
fected, and there may be some inheritance. As in autism, the indicated treatment is support , 
with little reported effectiveness of specific interventions. One doctor writes: " [S]ome . . .  
individuals with AS represent a unique resource for society, having the single-mindedness 
and consuming interest to advance our knowledge in various areas of science, math, etc." 
The study tested Borcherds and two university students vs. 14 controls (what? no Fields 
Medalists among the controls?) on "folk physics," "folk psychology" {reading mental states 
from photographs of eyes), and "the most complex test of 'executive function"' {doing the 
Tower of Hanoi ! ) .  The AS individuals did poorly in "folk psychology" but were "at the 
ceiling" on the

' 
other tests. The conclusion is that "theory of mind {folk psychology) is in

dependent of IQ, executive function and reasoning about the physical world." The typology 
suggests that there may be other syndromes (and corresponding slang words?) that might 
embrace socially adept and attractive people who are chronically disorganized or incapable 
of scientific reasoning or rational discussion. {Thanks to Barry Cipra.) 

Stewart, Ian, It's a funny old world, New Scientist 165 (No. 2224) {5 February 2000) 41-43 .  

The prolific Ian Stewart here explains the Poincare conjecture for the general public: "If 
all loops shrink, is it a 3-sphere?" The exposition is so non-technical that he does not reach 
the statement of the conjecture until two-thirds of the way through the article; the rest 
speculates about the likelihood of success for Thurston's geometrization approach and an 
approach by triangulation, then suggests that perhaps the answer is undecidable [if so, then 
because of its logical form, it would in fact be true] . 

1 63 
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Gardner, Martin, The Last Recreations: Hydras, Eggs, and other Mathematical Mystifica
tions , Springer-Verlag, 1997; x + 392 pp, $25. ISBN 0-387-94929-1 . 

Over the period 1956-1986, Martin Gardner-who took no college courses in mathematics
wrote hundreds of columns on "Mathematical Recreations" for Scientific American. In 
the years since 1959, the columns have been collected into books; this is the fifteenth and 
final collection-"the brilliant capstone to Martin Gardner's unrivalled career as the king of 
mathematical exposition" (Ron Graham) . It features 23 columns plus corrections, addenda, 
and additional references. The topics range from fun with eggs and checker recreations to 
the monster group, Bulgarian solitaire, and minimal Steiner trees. (Note to publisher: 
Excessive leading makes for too little on a page and hence unnecessarily many pages. )  

Fernandes, Andrew D. ,  Elliptic-curve cryptography, Dr. Dobb 's Journal (December 1999) 
56-63. 

Contemporary cryptographic systems are based on the difficulty of factoring integers (e.g. , 
the RSA cryptosystem) or else on the difficulty of finding discrete logarithms in a group: 
Given a group and elements x and y, find a positive integer k for which x = yk . The 
Diffie-Hellman key exchange scheme and various digital signature schemes (e.g . ,  the U.S .  
government Digital Signature Algorithm (DSA)) work with the group z; over a large 
prime p. Elliptic-curve cryptography (ECC) replaces this group with one over an elliptic 
curve. The motivations for ECC are time (addition in the elliptic curve group can be much 
faster than multiplication in z; ) ,  space (shorter keys for a security-equivalent elliptic-curve 
system) , and hope (that the discrete logarithm problem in ECC is fundamentally harder) .  
Author Fernandes discusses the pros and cons of ECC, experiments with selecting elliptic 
curves, conducts a comparison benchmarking of DSA and ECC systems, and points the 
reader to further sources. Code is available at http : / /www . ddj . com/ftp/ 1999/ 1 9 9 9 _ 1 2/ 

ellip . zip . 

The Top Ten Algorithms. Special issue of Computing in Science & Engineering 2 (1 )  
(January/February 2000) .  

Guest editors Jack Dongarra and Francis Sullivan assemble here articles on the 10 algo
rithms "with the greatest influence on the development and practice of science and en
gineering in the 20th century." Here they are in chronological order, almost all from the 
third quarter of the century: Metropolis algorithm for Monte Carlo, simplex method for 
LP (article by John Nash), Krylov subspace iteration methods, decompositional approach 
to matrix computation, Fortran optimizing compiler, QR algorithm, quicksort, fast Fourier 
transform, integer relation detection, and fast multi pole method. It would be an interesting 
exercise to ask the same question about what theorems had "the greatest influence on the 
development and practice of science and engineering in the 20th century." 

Bollag, Burton, Notes from academe: Proofs and conundrums for North American students 
in math-crazy Hungary, Chronicle of Higher Education ( 1 7  December 1999) B4. 

Roughly 15 years after its establishment, the Budapest Semester in Mathematics has at 
last attracted the attention of the U.S. weekly newspaper of college administrators and 
professors . Judging from the the activity at the Budapest Semester's booth at the January 
Mathematics Meetings, the program is healthy; but this article relates worry that Hun
gary's fame as an "incubator" of mathematicians may not persist in the post-Communist 
free-market era, when mathematicians are relatively poorly paid : "If a woman marries a 
mathematician, it's not something she wants to advertise, as if she married a banker," 
says Dezs6 Miklos, acting director. Perhaps, given the famous Hungarian mathematical 
tradition, Hungarian men who marry mathematicians have other sentiments. 
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New Editor-Elect of Mathematics Magazine 

Beginning immediately, please submit new manuscripts to: 

Frank Farris 
Department of Mathematics and Computer Science 
Santa Clara University 
500 El Camino Real 
Santa Clara, CA 95053-0290 

Please read the editorial guidelines posted at www . maa . org/pubs/mathmag . html . 
In addition, we offer the following ideas for potential authors: 

• Initial submission continues to be in a physical rather than electronic form. 
Should your article be accepted, we will ask you to provide a 9-'IEX file using 
one of the templates provided at our website . If this is impossible for you , a 
text file or common word-processor document is acceptable. 

• Remember that a good expository article begins with an introduction that 
grabs the reader 's attention and encourages him or her to keep reading. 

• If you wish to provide any electronic complement to your article , including 
such things as color illustrations, Java applets ,  or animations , supply the URL 
of your draft site. If your article is accepted, complements will be hosted at 
www . maa . org. 

• In the interest of respecting the time of our referees, we recommend a referee 's 
appendix, not for publication, but to guide the referee . Please expand on 
statements such as , "A simple calculation shows . . . . " It is often appropriate 
to suppress such things in exposition, but a referee might find the additional 
informl;)-tion a time-saver. 

• We strongly recommend that you search the electronic database of Mathe
matics Magazine and the College Mathematics Journal for articles on subjects 
related to yours. Follow the link to this site from the address above. This 
should help to fill out your bibliography and avoid any duplication. 
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@ The Mathematical  Association of America 

The Math Chat Book 
Fra n k  Morga n 

Series: MAA Spectrum 

This book shows that mathematics can be fun for everyone. I t  grew 
out of Frank Morgan's l ive, cal l - in  Math Chat TV show and biweekly 
Math Chat column in The Ch ristian Science Monitor. The questions, 
comments, and even the answers come largely from the callers and 
readers themselves. 

Why does the new year start earlier in Europe? Why is the Fourth of 
July on a different day of the week each year? How can you be elected 
President with just 22% of the vote? Can a computer have free wil l?  
Didn't some kid find a mistake on the SATs? Do ai rplanes get l ighter as 
passengers eat lunch? College students make important progress on 
the still open "Double Bubble Conjecture ."  

One youngster asks, " If I l ive for 6000 years, how many days wil l  that be?" His first answer is ( 6000 years ) (365 
days/year) = 2 , 1 90,000 days. That is not quite right: i t  overlooks leap years. An older student takes leap years 
into account ,  adds 1 500 leap year days, and comes up with 2 , 1 9 1 ,500 days. The answer is st i l l  not quite right. 
Every hundred years we skip a leap year ( the year 1 900, although divisible by four, was not a leap year ) ,  so 
we subtract 60 days to get 2 , 1 9 1  ,440. The answer is stil l not quite right. Every four  hundred years we put the 
leap year back in  (2000 will be a leap year ) ,  so we add back 1 5  days to get 2 , 1 9 1 ,455,  the final answer. 

This book makes no attempt to fit any mold. Although written by a research mathematician, it goes where 
the cal lers and readers take it, over a wide range of topics and levels. Almost anyone paging through it wil l  
find something of interest .  I t  is t ime for everyone to see how much fun mathematics can be. 
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The Random Walks of George P61ya 
Gera l d  L. Al exa nderson 

Series: MAA Spectrum 

In  the first half of this charming book Gerald Alexanderson presents an 
insightful portrait of George P6lya, the great teacher and mathematician. 
In  the second half of the book, Alexanderson assembles eight papers that 
describe P61ya's contribution to various fields. 

George P6lya enjoyed the esteem of the mathematical community not only for 
his deep and influential contributions in a variety of mathematical fields, but 
also for his groundbreaking work in the teaching of mathematics. His standing 
in the latter area could rest solely on his having written one of the most widely 
read books in mathematics, the still-popular How to Solve It. In addition to his 
championing problem-solving, he contributed to mathematics important 
results in complex and real analysis, inequal i t i tes, mathematical physics, 
combinatorics, probability theory, number theory, and geometry. He coined 

the phrases "random walk" and "central limit theorem" and gave to mathematics the P6lya Enumeration 
Theorem, along with many other ideas used widely today. The present work describes how such versatility came 
about and, along the way, tells some enlightening stories about mathematics and mathematicians. 

The list of articles about P6lya's work include: Polya's Work in Probability, by K.L. Chung, Polya's Work in 
Analysis, by R.P. Boas, Comments on Number Theory, by D.H. Lehmer, Polya's Geometry, by Doris Shattschneider, 
Polya's Enumeration Theorem, by R.C. Read, Polya's Contributions in Mathematical Physics, by M.M.  Schiffer, 
George Polya and Mathematics Education, by Alan Schoenfeld, and Polya's Influence-References to His Work. 
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Assessment Practices in  Undergraduate 
Mathematics 

Bo n n i e  G o l d ,  Sa n d ra Ke ith,  a n d  
Wi l l i a m  Ma r ion ,  Ed ito rs 

Series: MAA Notes 

T h i s  book,  a col lec t i o n  of assess m e n t  p ract ices t h a t  have been t r ied 
by m o re than I 00 co n t r i b u tors  i n  m a t h e m a t ics a t  a wide v a r i e t y  of 
schools,  a t t e m p t s  to o ffe r  the m a t h e m a t ics teacher sugges t i o n s  
from a n  i ns ider 's perspect ive .  T h e  book is  n o t  fo r m u l a i c :  n o  
a u t h o r  c l a i m s  to have " t h e  a n swer," a n d  many o f  t h e  p rojects 
reported o n  a re s t i l l  in progress.  O n  t h e  other h a n d ,  t h e  a r t ic les 

p rov ide  a wea l t h  of sugges t i o n s  fro m  c reat ive ,  energet i c  a n d  co n 

cerned i n d iv i d u a l s  w h o  have h a d  t h e  cou rage to experi ment  a n d  t o  
c r i t iq u e  t h e i r  own effo r t s .  W i t h o u t  d o u b t ,  t h e  reader w i l l  fi n d  i n  
t h ese pages encou rage m e n t  t o  expe r i m e n t  o n  h is or  h e r  o w n ,  to 

find assess m e n t  methods which a re perso n a l ly mea n i n gfu l .  

Tec h n i q u es o ffe red i n  t h i s  b o o k  r a n ge fro m  b r i e f  ten - m i n u t e  c lassroom exercises a n d  e x a m p l e s  o f  

a l t e r n a t i ve tes t i n g,  gro u p  w o r k  a n d  ass ign m e n t s ,  to  exa m p l es o f  h o w  depa r t m e n t s  m ay m e a s u re t h e  
p lace m e n t  of s t u d e n t s  i n to co u rses ,  t h e  effect iveness o f  t h e  m aj o r, a n d  t h e  q u a n t i ta t ive l i teracy o f  t h e i r  

grad u a t i n g  s t u d e n t s .  Teachers  be leaguered b y  fo r m a l  e n d - o f- te r m  teacher  eva l u a t i o n  fo r m s ,  w i l l  fi nd 

a var ie ty  of a l t e r n a t ive assess m e n t  tech n iq u e s  t h a t  p rovides ways i n  w h i c h  t h e  q u a l i t y  of teach i n g  can  
be bet ter  exa m i n ed . 

The book is u n ique  a m o n g  assessment  books i n  represe n t i n g  t h e  p o i n t  of v iew of m a t h e m a t i c i a n s  exp lor
ing a n d  exa m i n i ng m e t h ods of l ea r n i n g  i n  t h e i r  fiel d .  

Catalog Code: NTE-49/ ) R  3 5 0  p p . ,  Paperbound, 1 999 I B 0-88385- 1 6 1 -x List: $29.95 MAA Member: $23.95 

Name ________________________________ __ Credit  Card No. ________________________________ _ 
Address ________ , Signature ___________________________ Exp. Date __ /_ 

Ci ty  __________________________________ _ Qty __ _ Price $, _______ Amount $ _____________ � 
Zip ---------------

Catalog Code: TE-49/JR 

(sh ipped via U PS):  $2.95 for th< first book, and S I .OO for <ach 
- ••omllOI:Ial book. Canadian ord<rs: $4.50 for the fi r  t book and $ 1 .50 for <ach 
• ••ouol lu.:.ao book. C'.anadian orders will be shtpped within 1 0  days of r<ceipt 

the fastest avaolable route. We do not sh ip via UPS into Canada 
customer specia l ly r�ucsts th i.s  service. Canadjan customers who 

UPS shipment will be b o i led an addotional 7% of their total order . 
• ()verscas Orders: $3.50 per llem ordered for books sent surface mail. 

av; ulablc at a rate of $7.00 per book. Foreign orders must be pa id in 
through a US bank or through a New York clearinghouse. Credit  

orders arc accepted for all customers. All orders must be prepaid with 
.xception of books purchased for resale by bookstores and wholesalers. 



@ The Mathematical Association of America 

Mathematica l Fa l lacies, Flaws, and Fl imflam 
Edwa rd J .  Ba rbea u 

Series:  MAA Spectrum 

This book is a collection of mathematical mistakes made by students, teachers, 
and occasionally seasoned researchers, along with an analysis for most of them. 
While all the material is for personal enlightenment and amusement, high 
school and college teachers may use the material to illust rate important and 
subtle points in mathematics. 

Newspapers are responsible for a good number of these mathematical mishaps, 
particularly in arithmetic (especially percentages) and probability. Quite a number 
of the "fallacies" come from professional mathematicians. Some are the result of 
simple oversight, and others are deliberately crafted by the mathematician to drive 
home an important point to students. 

A glimpse at the Table of Contents offers examples from number theory, algebra and trigonometry, geometry, 
fmite mathematics, probability, calculus, linear algebra and advanced undergraduate mathematics. 

An example of "mathematical flimflam" from the Calculus Limits and Derivatives section: 

The shortest distance from a point to a parabola 
Problem: Determine the shortest distance from the point (0 ,5)  to a parabola 1 6y = x2 . 
Solution: We minimize f(y) = x2 + (y - 5) 2 = 1 6y + (y - 5) 2 .  
Since f'(y) = 2y + 6, the only critical value of f is y= -3 ,  which corresponds to an imagainary value 
of x. Hence the minimum distance does not exist. 
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